PREPARATION AND PHYSICOCHEMICAL PROPERTIES OF NATURALLY GROWN GREEN SPIROGYRA ALGAE BIODIESEL Scientific paper

Main Article Content

Teku Kalyani
Lankapalli Sathya Vara Prasad
Aditya Kolakoti
https://orcid.org/0000-0002-7515-8318

Abstract

In this study, biodiesel was produced from a naturally grown green algae (Spirogyra). The algae were cultivated in an open pond for 180 days without any fertilizers or nutrients. The dried algae powder to oil yield and significant fuel properties of viscosity, density, cetane number, calorific value, flash point, pour, and cloud points are investigated for B10 to B100 blends. The results of solvent oil extraction show that at a 1:2 (algae powder to solvent) ratio and 65 °C, algae oil yield was 22.66%. Furthermore, Box-Behnken assisted response surface optimization technique was implemented. From the 29 random experiments, 96.24% Spirogyra algae oil biodiesel (SAOBD) yield was achieved under the optimum conditions of 50 °C, 180 minutes, the molar ratio of 9:1, and catalyst concentration of 0.5 wt%. The fatty acid composition reveals that 73.95 wt% saturated FAC was observed in SAOBD. The significant fuel properties are measured by following ASTM-D6751 standards, and 40% SAOBD in diesel fuel could be an optimum blend ratio for engine experimentation. Finally, regression equations with high correlation coefficients (R2) were developed to predict the various blend ratios for the fuel properties.

Article Details

How to Cite
Kalyani, T. ., Prasad, L. S. V. ., & Kolakoti, A. . (2022). PREPARATION AND PHYSICOCHEMICAL PROPERTIES OF NATURALLY GROWN GREEN SPIROGYRA ALGAE BIODIESEL: Scientific paper. Chemical Industry & Chemical Engineering Quarterly, 29(1), 75–85. https://doi.org/10.2298/CICEQ220215015K
Section
Articles

References

V. Ahire, M. Shewale, A. Razban, Arch. Comput. Methods Eng. 28 (2021) 4897—4915. https://doi.org/10.1007/s11831-021-09558-x.

I. Ambata, V. Srivastavaa, M. Sillanpääa, Renewable Sustainable Energy Rev. 90 (2018) 356—369. https://doi.org/10.1016/j.rser.2018.03.069.

S.G. Mungodla, L.Z. Linganiso, S. Mlambo, T. Motaung, J. Eng. Des. Technol. 17 (2019) 670—704. https://doi.org/10.1108/JEDT-07-2018-0111.

C.G. Khoo, Y.K. Dasan, M.K. Lam, K.T. Lee, Bioresour. Technol. 292 (2019) 121964. https://doi.org/10.1016/j.biortech.2019.121964.

A. Jacob, B. Ashok, A. Alagumalai, O.H. Chyuan, P.T.K. Le, Energy Convers. Manage. 228 (2021) 113655. https://doi.org/10.1016/j.enconman.2020.113655.

P. Mäki-Arvela, I. Hachemi, D.Y. Murzin, J. Chem. Technol. Biotechnol. 89 (2014) 1607—1626. https://doi.org/10.1002/jctb.4461.

X. Zhai, C. Zhu, Y. Zhang, H. Pang, F. Kong, J. Wang, Z. Chi, Sci. Total Environ. 738 (2020) 139439. https://doi.org/10.1016/j.scitotenv.2020.139439.

P. Mehta, R. Rani, R. Gupta, A.S. Mathur, S.K. Puri, Algal Res. 36 (2018) 88— 95. https://doi.org/10.1016/j.algal.2018.10.015.

J. Masojídek, G. Torzillo, Encycl. Ecol. (2008) 2226—2235. https://doi.org/10.1016/B978-008045405-4.00830-2.

Widayat, J. Philia, J. Wibisono, E3S Web Conf., 2nd Int. Conf. Energy, Environ. Inf. Syst. (ICENIS 2017), 31, Semarang, Indonesia, (2018) p.3. https://doi.org/10.1051/e3sconf/20183104009.

M. Setiyo, T.A. Purnomo, D. Yuvenda, M.K. Biddinika, N.A.C. Sidik, O.D. Samuel, A. Kolakoti, A. Calam, Mech. Eng. Soc. Ind. 1 (2021) 3—6. https://doi.org/10.31603/mesi.5309.

S.Y. Teng, G.Y. Yew, K. Sukačová, P.L. Show, V. Máša, J.S. Chang, Biotechnol. Adv. 44 (2020) 107631. https://doi.org/10.1016/j.biotechadv.2020.107631.

A. Kolakoti, M. Setiyo, B. Waluyo, Mech. Eng. Soc. Ind. 1 (2021) 22—30. https://doi.org/10.31603/mesi.5320.

S. Prabakaran, T. Mohanraj, A. Arumugam, Renewable Energy 180 (2021) 353—371. https://doi.org/10.1016/j.renene.2021.08.073.

S.P. Singh, P. Singh, Renewable Sustainable Energy Rev. 50 (2015) 431— 444. https://doi.org/10.1016/j.rser.2015.05.024.

G. Bhargavi, P.N. Rao, S. Renganathan, IOP Conf. Ser. Mater. Sci. Eng. Hyderabad, India, 330 (2018) 012024. https://doi.org/10.1088/1757-899X/330/1/012024.

A. Kolakoti, G. Satish, Aust. J. Mech. Eng. (2020) 1—13. https://doi.org/10.1080/14484846.2020.1842298.

S. Prabakaran, T. Mohanraj, J. Mech. Sci. Technol. 35 (2021) 4765—4773. https://doi.org/10.1007/s12206-021-0942-0.

I. Barabás, I.A. Todoruţ, in Textbook of Biodiesel-Quality, Emissions and By-Products, In Tech Open book series, G. Montero Ed., London (2011) p.3—28. ISBN: 978-953-307-784-0; EBOOK (PDF) ISBN: 978-953-51-4402-1.

A. Kolakoti, B.V.A. Rao, Biofuels 10 (2019) 591—605. https://doi.org/10.1080/17597269.2017.1332293.

A. Kolakoti, B. Prasadarao, K. Satyanarayana, M. Setiyo, H. Köten, M. Raghu, Automot. Exper. 5 (2022) 3—15. https://doi.org/10.31603/ae.6171.

B. Prasadarao, A. Kolakoti, P. Sekhar, Recent Adv.

Comput. Sci. Commun. 14 (2021) 1824—1832. https://doi.org/10.2174/2666255813666191204143202.

S.Prabakaran, R.Manimaran, T.Mohanraj, M.Ravikumar, Mater. Today: Proc. 45 (2021) 2784—2788. https://doi.org/10.1016/j.matpr.2020.11.742.

F. Yasar, Fuel 264 (2020) 116817. https://doi.org/10.1016/j.fuel.2019.116817.

V.A.R. Basava, A. Kolakoti, P.R. Kancherla, in Handbook of Research on Advancements in Manufacturing, Materials, and Mechanical Engineering, Leonid Burstein, IGI Global, Hershey (2021), p.25—53. https://doi.org/10.4018/978-1-7998-4939-1.ch002.

A. Kolakoti, B.V.A. Rao, Int. J. Automot. Mech. Eng. 17 (2020) 8052— 8066. https://doi.org/10.15282/ijame.17.2.2020.23.0604.

N. Acharya, P. Nanda, S. Panda, S. Acharya, Eng. Sci. Technol. Int. J. 20 (2017) 511—517. https://doi.org/10.1016/j.jestch.2016.12.005.

N.S. Dugala, G.S. Goindi, A. Sharma, J. King. Saud. Univ. Eng. Sci. 33 (2021) 424—436. https://doi.org/10.1016/j.jksues.2020.05.006.