A REVIEW ON MODELING OF PROTON EXCHANGE MEMBRANE FUEL CELL

Review paper

Authors

  • Sahra Hamdollahi School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China https://orcid.org/0000-0003-1609-8033
  • Luo Jun School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China

DOI:

https://doi.org/10.2298/CICEQ220126014H

Keywords:

fuel cell performance, empirical/semi-empirical, multiphase flow model, proton exchange membrane fuel cell, PEMFC, modeling

Abstract

Fuel cells are electrochemical devices that convert chemical energy into electrical energy. Among various fuel cells proton exchange membrane fuel cell (PEMFC) is considered one of the most promising candidates for the next generation power sources because of its high-power densities, zero-emission, and low operation temperature. In recent years, modeling has received enormous attention and interest in understanding and studying the PEMFC phenomena. This article reviews recent progress in PEMFC modeling. Empirical/semi-empirical, analytical, and mechanistic models, zero-to-three dimensional models, and multiphase flow models, such as multiphase mixture, multi-fluid, and VOF models, are different types of PEMFC modeling approaches, respectively, in terms of parametric, dimensional and two or three-phase flow. The present study enlightens the importance of combining different modeling strategies and parameter identification in PEMFC modeling to achieve precise models to reduce the time and cost of experiments.

References

U. Lucia, Renewable Sustainable Energy Rev. 30 (2014) 164—169. https://doi.org/10.1016/j.rser.2013.09.025

J. Macedo-Valencia, J.M. Sierra, S.J. Figueroa-Ramírez, S.E. Díaz, M. Meza, Int. J. Hydrogen Energy 41 (2016) 23425—23433. https://doi.org/10.1016/j.ijhydene.2016.10.065

T. Elmer, M. Worall, S. Wu, S.B. Riffat, Renewable Sustainable Energy Rev. 42 (2015) 913—931. https://doi.org/10.1016/j.rser.2014.10.080

Y. Chang, Y. Qin, Y. Yin, J. Zhang, X. Li, Appl. Energy 230 (2018) 643—662. https://doi.org/10.1016/j.apenergy.2018.08.125

N. Limjeerajarus, P. Charoen-amornkitt, Int. J. Hydrogen Energy 40 (2015) 7144—7158. https://doi.org/10.1016/j.ijhydene.2015.04.007

P. Pei, H. Chen, Appl. Energy 125 (2014) 60—75. https://doi.org/10.1016/j.apenergy.2014.03.048

S.A. Atyabi, E. Afshari, J. Therm. Anal. Calorim. 135 (2019) 1823—1833. https://doi.org/10.1007/s10973-018-7270-3

J.P. Kone, X. Zhang, Y. Yan, G. Hu, G. Ahmadi, J. Comput. Multiphase Flows 9 (2017) 3—25. https://doi.org/10.1177/1757482X176923

N. Ahmadi, S. Rezazadeh, A. Dadvand, I. Mirzaee. J. Renewable Energy Environment 2 (2015) 36-46. https://doi.org/10.30501/jree.2015.70069

A.A. El-Ferganya, H.M. Hasanien, A.M. Agwa, Energy Convers. Manage. 201 (2019) 112197. https://doi.org/10.1016/j.enconman.2019.112197

D. Hao, J. Shen, Y. Hou, Y. Zhou, H. Wang, Int. J. Chem. Eng. 2016 (2016) 4109204. https://doi.org/10.1155/2016/4109204

Y. Akimoto, K. Okajima, J. Energy Technol. Policy 1 (2014) 91—96. https://doi.org/10.1080/23317000.2014.972480

M. Pan, C. Li, J. Liao, H. Lei, C. Pan, X. Meng, H. Huang, Energy 207 (2020) 1—13. https://doi.org/10.1016/j.energy.2020.118331

M. Ohenoja, A. Sorsa, K. Leiviskä, Computers 7 (2018) 60—72. https://doi.org/10.3390/computers7040060

A.U. Thosar, H. Agarwal, S. Govarthan, A.K. Lele, Chem. Eng. Sci. 206 (2019) 96—117. https://doi.org/10.1016/j.ces.2019.05.022

J.X. Liu, H. Guo, F. Ye, C.F. Ma, Energy 119 (2017) 299—308. https://doi.org/10.1016/j.energy.2016.12.075

R.K.A. Rasheed, Q. Liao, Z. Caizhi, S.H. Chan, Int. J. Hydrogen Energy 42 (2017) 3142—3165. https://doi.org/10.1016/j.ijhydene.2016.10.078

B. Grondin-Perez, S. Roche, C. Lebreton, M. Benne, C. Damour, J.A. Kadjo, Engineering 6 (2014) 418—426. https://doi.org/10.4236/eng.2014.68044

E.J.F. Dickinson, G. Hinds, J. Electrochem. Soc. 166 (2019) 221—231. https://doi.org/10.1149/2.0361904jes

J. Lu, Ph.D. Thesis, James Cook University, North Queensland, Australia, (2013). https://researchonline.jcu.edu.au/40440/

Z. Sun, N. Wang, Y. Bi, D. Srinivasan, Energy 90 (2015) 1334—1341. https://doi.org/10.1016/j.energy.2015.06.081

H. Abdi, N.A. Messaoudene, L. Kolsi, M.W. Naceur, J. Therm. Anal. Calorim. 144 (2021) 1749—1759. https://doi.org/10.1007/s10973-020-10370-1

M. Sarvi, I. Soltani, Int. J. Comput. Sci. Eng. Technol. 3 (2012) 285—378. https://ijcset.com/docs/IJCSET12-03-08-036.pdf

S.Z. Chen, Z.G. Bao, Y.C. Wang, Appl. Mech. Mater. 740 (2015) 474—478. https://doi.org/10.4028/www.scientific.net/AMM.740.474

P. Hu, G. Cao, X. Zhu, J. Li, Simulation Model. Pract. Theory 18 (2010) 574—588. https://doi.org/10.1016/j.simpat.2010.01.001

A. Omran, A. Lucchesi, D. Smith, A. Alaswad, A. Amiri, T. Wilberforce, J.R. Sodr´, A.G. Olabi, Int. J. Thermofluids 11 (2021) 100—110. https://doi.org/10.1016/j.ijft.2021.100110

J. Cheng, G. Zhang, Int. J. Electr. Power Energy Syst. 62 (2014) 189—198. https://doi.org/10.1016/j.ijepes.2014.04.043

K. Priya, T.S. Babu, K. Balasubramanian, K.S. Kumar, N. Rajasekar, Sustain. Energy Technol. Assess. 12 (2015) 46—52. https://doi.org/10.1016/j.seta.2015.09.001

Y. Cao, X. Kou, Y. Wu, K. Jermsittiparsert, A. Yildizbasi, Energy Rep. 6 (2020) 813—823. https://doi.org/10.1016/j.egyr.2020.04.013

Y. Li, Z. Ma, M. Zheng, D. Li, Z. Lu, B. Xu, Membranes 11 (2021) 1—16. https://doi.org/10.3390/membranes11090691

Y. Cao, Y. Li, G. Zhang, K. Jermsittiparsert, N. Razmjooy, Energy Rep. 5 (2019) 1616—1625. https://doi.org/10.1016/j.egyr.2019.11.013

P. Schneider, C. Sadeler, A. C. Scherzer, N. Zamel, D. Gerteisen, J. Electrochem. Soc. 166 (2019) F322. https://doi.org/10.1016/j.egyr.2019.11.01310.1149/2.0881904jes

Z.P. Du, C. Steindl, S. Jakubek, Processes 9 (2021) 713. https://doi.org/10.3390/pr9040713

Y. Nalbant, C.O. Colpan, Y. Devrim, Int. J. Hydrogen Energy 43 (2018) 5939—5950. https://doi.org/10.1016/j.ijhydene.2017.10.148

Y. Sohn, S. Yim, G. Park, M. Kim, S. Cha, K. Kim, Int. J. Hydrogen Energy 42 (2017) 13226—13233. https://doi.org/10.1016/j.ijhydene.2017.04.036

H. Jiang, L. Xu, H. Struchtrup, J. Li, Q. Gan, X. Xu, Z. Hu, M. Ouyang , J. Electrochem. Soc. 167 (2020) 1—18. https://doi.org/10.1149/1945-7111/ab6ee7

J.A. Salva, A. Iranzo, F. Rosa, E. Tapia, Int. J. Hydrogen Energy 41 (2016) 20615—20632. https://doi.org/10.1016/j.ijhydene.2016.09.152

S. Liu, T. Chen, Y. Xie, Int. J. Green Energy 17 (2020) 255—273. https://doi.org/10.1080/15435075.2020.1722133

J.X. Liu, H. Guo, F. Ye, C.F. Ma, Energy 119 (2017) 299—

https://doi.org/10.1016/j.energy.2016.12.075

V. Ionescu, N. Buzbuchi, Energy Procedia 112 (2017) 390—397. https://doi.org/10.1016/j.egypro.2017.03.1085

S.A. Saco, R.T.K. Raj, P. Karthikeyan, Energy 113 (2016) 558—573. https://doi.org/10.1016/j.energy.2016.07.079

M. Jourdani, H. Mounir, A. Marjani, Int. J. Multiphys. 11 (2017) 427—442. https://doi.org/10.21152/1750-9548.11.4.427

D.G. Caglayan, B. Sezgin, Y. Devrim, I. Eroglu, Int. J. Hydrogen Energy 41 (2016) 10060—10066. https://doi.org/10.1016/j.ijhydene.2016.03.049

A. d’Adamo, M. Haslinger, G. Corda, J. Höflinger, S. Fontanesi, T. Lauer, Processes 9 (2021) 688. https://doi.org/10.3390/pr9040688

Z. Niu, J. Wu, Z. Bao, Y. Wang, Y. Yin, K. Jiao, Int. J. Heat Mass Transfer 139 (2019) 58—68. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.008

A. Di. Le, B. Zhou. J. Power Sources 182 (2008) 197—222. https://doi.org/10.1016/j.jpowsour.2008.03.047

A. Di. Le, B. Zhou. J. Power Sources 182 (2008) 197—222. https://doi.org/10.1016/j.jpowsour.2008.01.047

N.S.M. Hassan, W.R.W. Daud, K. Sopian, J. Sahari, J. Power Sources 193 (2009) 249—257. https://doi.org/10.1016/j.jpowsour.2009.01.066

L. Xing, X. Liu, T. Alaje, R. Kumar, M. Mamlouk, K. Scott, Energy 73 (2014) 618—634. https://doi.org/10.1016/j.energy.2014.06.065

Z. Zhang, W. Liu, Y. Wang, Int. J. Hydrogen Energy 44 (2019) 379—388. https://doi.org/10.1016/j.ijhydene.2018.05.149

G. Zhang, L. Fan, J. Sun, K. Jiao, Int. J. Heat Mass Transfer 115 (2017) 714—724. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.102

C. Siegel, Energy 33 (2008) 1331—1352. https://doi.org/10.1016/j.energy.2008.04.015

J. Shen, Z. Tu, S. H. Chan. Appl. Therm. Engineering 149 (2019) 1408—1418. https://doi.org/10.1016/j.applthermaleng.2018.12.138

Y. Shen, B. Zhao, T. H. Kwan, Q. Yao. Energy Convers. Manage. 213 (2020) 112840—112855. https://doi.org/10.1016/j.enconman.2020.112840

J. Shen, Z. Tu, S. H. Chan. Appl. Therm. Engineering 164 (2020) 114464—114473. https://doi.org/10.1016/j.applthermaleng.2019.114464

M. Sauermoser, N. Kizilova, B. G. Pollet, S. Kjelstrup. Frontiers in Energy Research 8 (2020). https://doi.org/10.3389/fenrg.2020.00013

Z. Liu, Z. Mao, C. Wang. J. Power Sources 158 (2006) 1229—1239.https://doi.org/10.1016/j.jpowsour.2005.10.060

I. S. Hussaini, C. Y. Wang. J. Power Sources 187 (2009) 444—451. https://doi.org/10.1016/j.jpowsour.2008.11.030

J. Shen, L. Xu, H. Chang, Z. Tu, S. H. Chan. Energy Convers. Manage. 207 (2020) 112537—112545. https://doi.org/10.1016/j.enconman.2020.112537

K. Mammar, F. Saadaoui, S. Laribi. Renewable Energy Focus 30 (2019) 123—130. https://doi.org/10.1016/j.ref.2019.06.001

H. Li, Y. Tang, Z. Wang, Z. Shi, S. Wu, D. Song, J. Zhang, K. Fatih, J. Zhang, H. Wang, Z. Liu, R. Abouatallah, A. Mazza. J. Power Sources 178 (2008) 103—117. https://doi.org/10.1016/j.jpowsour.2007.12.068

E.C. Kumbur, M.M. Mench, in Encyclopedia of Electrochemical Power Sources, J. Garche Ed., Elsevier B.V., (2009), p. 828-847. ISBN 978-0-444-52745-5.

Graphical Abstract

Downloads

Published

15.07.2022 — Updated on 27.10.2022

Issue

Section

Articles

How to Cite

A REVIEW ON MODELING OF PROTON EXCHANGE MEMBRANE FUEL CELL: Review paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 29(1), 61-74. https://doi.org/10.2298/CICEQ220126014H

Similar Articles

21-30 of 106

You may also start an advanced similarity search for this article.