A REVIEW ON MODELING OF PROTON EXCHANGE MEMBRANE FUEL CELL
Review paper
DOI:
https://doi.org/10.2298/CICEQ220126014HKeywords:
fuel cell performance, empirical/semi-empirical, multiphase flow model, proton exchange membrane fuel cell, PEMFC, modelingAbstract
Fuel cells are electrochemical devices that convert chemical energy into electrical energy. Among various fuel cells proton exchange membrane fuel cell (PEMFC) is considered one of the most promising candidates for the next generation power sources because of its high-power densities, zero-emission, and low operation temperature. In recent years, modeling has received enormous attention and interest in understanding and studying the PEMFC phenomena. This article reviews recent progress in PEMFC modeling. Empirical/semi-empirical, analytical, and mechanistic models, zero-to-three dimensional models, and multiphase flow models, such as multiphase mixture, multi-fluid, and VOF models, are different types of PEMFC modeling approaches, respectively, in terms of parametric, dimensional and two or three-phase flow. The present study enlightens the importance of combining different modeling strategies and parameter identification in PEMFC modeling to achieve precise models to reduce the time and cost of experiments.
References
U. Lucia, Renewable Sustainable Energy Rev. 30 (2014) 164—169. https://doi.org/10.1016/j.rser.2013.09.025
J. Macedo-Valencia, J.M. Sierra, S.J. Figueroa-Ramírez, S.E. Díaz, M. Meza, Int. J. Hydrogen Energy 41 (2016) 23425—23433. https://doi.org/10.1016/j.ijhydene.2016.10.065
T. Elmer, M. Worall, S. Wu, S.B. Riffat, Renewable Sustainable Energy Rev. 42 (2015) 913—931. https://doi.org/10.1016/j.rser.2014.10.080
Y. Chang, Y. Qin, Y. Yin, J. Zhang, X. Li, Appl. Energy 230 (2018) 643—662. https://doi.org/10.1016/j.apenergy.2018.08.125
N. Limjeerajarus, P. Charoen-amornkitt, Int. J. Hydrogen Energy 40 (2015) 7144—7158. https://doi.org/10.1016/j.ijhydene.2015.04.007
P. Pei, H. Chen, Appl. Energy 125 (2014) 60—75. https://doi.org/10.1016/j.apenergy.2014.03.048
S.A. Atyabi, E. Afshari, J. Therm. Anal. Calorim. 135 (2019) 1823—1833. https://doi.org/10.1007/s10973-018-7270-3
J.P. Kone, X. Zhang, Y. Yan, G. Hu, G. Ahmadi, J. Comput. Multiphase Flows 9 (2017) 3—25. https://doi.org/10.1177/1757482X176923
N. Ahmadi, S. Rezazadeh, A. Dadvand, I. Mirzaee. J. Renewable Energy Environment 2 (2015) 36-46. https://doi.org/10.30501/jree.2015.70069
A.A. El-Ferganya, H.M. Hasanien, A.M. Agwa, Energy Convers. Manage. 201 (2019) 112197. https://doi.org/10.1016/j.enconman.2019.112197
D. Hao, J. Shen, Y. Hou, Y. Zhou, H. Wang, Int. J. Chem. Eng. 2016 (2016) 4109204. https://doi.org/10.1155/2016/4109204
Y. Akimoto, K. Okajima, J. Energy Technol. Policy 1 (2014) 91—96. https://doi.org/10.1080/23317000.2014.972480
M. Pan, C. Li, J. Liao, H. Lei, C. Pan, X. Meng, H. Huang, Energy 207 (2020) 1—13. https://doi.org/10.1016/j.energy.2020.118331
M. Ohenoja, A. Sorsa, K. Leiviskä, Computers 7 (2018) 60—72. https://doi.org/10.3390/computers7040060
A.U. Thosar, H. Agarwal, S. Govarthan, A.K. Lele, Chem. Eng. Sci. 206 (2019) 96—117. https://doi.org/10.1016/j.ces.2019.05.022
J.X. Liu, H. Guo, F. Ye, C.F. Ma, Energy 119 (2017) 299—308. https://doi.org/10.1016/j.energy.2016.12.075
R.K.A. Rasheed, Q. Liao, Z. Caizhi, S.H. Chan, Int. J. Hydrogen Energy 42 (2017) 3142—3165. https://doi.org/10.1016/j.ijhydene.2016.10.078
B. Grondin-Perez, S. Roche, C. Lebreton, M. Benne, C. Damour, J.A. Kadjo, Engineering 6 (2014) 418—426. https://doi.org/10.4236/eng.2014.68044
E.J.F. Dickinson, G. Hinds, J. Electrochem. Soc. 166 (2019) 221—231. https://doi.org/10.1149/2.0361904jes
J. Lu, Ph.D. Thesis, James Cook University, North Queensland, Australia, (2013). https://researchonline.jcu.edu.au/40440/
Z. Sun, N. Wang, Y. Bi, D. Srinivasan, Energy 90 (2015) 1334—1341. https://doi.org/10.1016/j.energy.2015.06.081
H. Abdi, N.A. Messaoudene, L. Kolsi, M.W. Naceur, J. Therm. Anal. Calorim. 144 (2021) 1749—1759. https://doi.org/10.1007/s10973-020-10370-1
M. Sarvi, I. Soltani, Int. J. Comput. Sci. Eng. Technol. 3 (2012) 285—378. https://ijcset.com/docs/IJCSET12-03-08-036.pdf
S.Z. Chen, Z.G. Bao, Y.C. Wang, Appl. Mech. Mater. 740 (2015) 474—478. https://doi.org/10.4028/www.scientific.net/AMM.740.474
P. Hu, G. Cao, X. Zhu, J. Li, Simulation Model. Pract. Theory 18 (2010) 574—588. https://doi.org/10.1016/j.simpat.2010.01.001
A. Omran, A. Lucchesi, D. Smith, A. Alaswad, A. Amiri, T. Wilberforce, J.R. Sodr´, A.G. Olabi, Int. J. Thermofluids 11 (2021) 100—110. https://doi.org/10.1016/j.ijft.2021.100110
J. Cheng, G. Zhang, Int. J. Electr. Power Energy Syst. 62 (2014) 189—198. https://doi.org/10.1016/j.ijepes.2014.04.043
K. Priya, T.S. Babu, K. Balasubramanian, K.S. Kumar, N. Rajasekar, Sustain. Energy Technol. Assess. 12 (2015) 46—52. https://doi.org/10.1016/j.seta.2015.09.001
Y. Cao, X. Kou, Y. Wu, K. Jermsittiparsert, A. Yildizbasi, Energy Rep. 6 (2020) 813—823. https://doi.org/10.1016/j.egyr.2020.04.013
Y. Li, Z. Ma, M. Zheng, D. Li, Z. Lu, B. Xu, Membranes 11 (2021) 1—16. https://doi.org/10.3390/membranes11090691
Y. Cao, Y. Li, G. Zhang, K. Jermsittiparsert, N. Razmjooy, Energy Rep. 5 (2019) 1616—1625. https://doi.org/10.1016/j.egyr.2019.11.013
P. Schneider, C. Sadeler, A. C. Scherzer, N. Zamel, D. Gerteisen, J. Electrochem. Soc. 166 (2019) F322. https://doi.org/10.1016/j.egyr.2019.11.01310.1149/2.0881904jes
Z.P. Du, C. Steindl, S. Jakubek, Processes 9 (2021) 713. https://doi.org/10.3390/pr9040713
Y. Nalbant, C.O. Colpan, Y. Devrim, Int. J. Hydrogen Energy 43 (2018) 5939—5950. https://doi.org/10.1016/j.ijhydene.2017.10.148
Y. Sohn, S. Yim, G. Park, M. Kim, S. Cha, K. Kim, Int. J. Hydrogen Energy 42 (2017) 13226—13233. https://doi.org/10.1016/j.ijhydene.2017.04.036
H. Jiang, L. Xu, H. Struchtrup, J. Li, Q. Gan, X. Xu, Z. Hu, M. Ouyang , J. Electrochem. Soc. 167 (2020) 1—18. https://doi.org/10.1149/1945-7111/ab6ee7
J.A. Salva, A. Iranzo, F. Rosa, E. Tapia, Int. J. Hydrogen Energy 41 (2016) 20615—20632. https://doi.org/10.1016/j.ijhydene.2016.09.152
S. Liu, T. Chen, Y. Xie, Int. J. Green Energy 17 (2020) 255—273. https://doi.org/10.1080/15435075.2020.1722133
J.X. Liu, H. Guo, F. Ye, C.F. Ma, Energy 119 (2017) 299—
https://doi.org/10.1016/j.energy.2016.12.075
V. Ionescu, N. Buzbuchi, Energy Procedia 112 (2017) 390—397. https://doi.org/10.1016/j.egypro.2017.03.1085
S.A. Saco, R.T.K. Raj, P. Karthikeyan, Energy 113 (2016) 558—573. https://doi.org/10.1016/j.energy.2016.07.079
M. Jourdani, H. Mounir, A. Marjani, Int. J. Multiphys. 11 (2017) 427—442. https://doi.org/10.21152/1750-9548.11.4.427
D.G. Caglayan, B. Sezgin, Y. Devrim, I. Eroglu, Int. J. Hydrogen Energy 41 (2016) 10060—10066. https://doi.org/10.1016/j.ijhydene.2016.03.049
A. d’Adamo, M. Haslinger, G. Corda, J. Höflinger, S. Fontanesi, T. Lauer, Processes 9 (2021) 688. https://doi.org/10.3390/pr9040688
Z. Niu, J. Wu, Z. Bao, Y. Wang, Y. Yin, K. Jiao, Int. J. Heat Mass Transfer 139 (2019) 58—68. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.008
A. Di. Le, B. Zhou. J. Power Sources 182 (2008) 197—222. https://doi.org/10.1016/j.jpowsour.2008.03.047
A. Di. Le, B. Zhou. J. Power Sources 182 (2008) 197—222. https://doi.org/10.1016/j.jpowsour.2008.01.047
N.S.M. Hassan, W.R.W. Daud, K. Sopian, J. Sahari, J. Power Sources 193 (2009) 249—257. https://doi.org/10.1016/j.jpowsour.2009.01.066
L. Xing, X. Liu, T. Alaje, R. Kumar, M. Mamlouk, K. Scott, Energy 73 (2014) 618—634. https://doi.org/10.1016/j.energy.2014.06.065
Z. Zhang, W. Liu, Y. Wang, Int. J. Hydrogen Energy 44 (2019) 379—388. https://doi.org/10.1016/j.ijhydene.2018.05.149
G. Zhang, L. Fan, J. Sun, K. Jiao, Int. J. Heat Mass Transfer 115 (2017) 714—724. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.102
C. Siegel, Energy 33 (2008) 1331—1352. https://doi.org/10.1016/j.energy.2008.04.015
J. Shen, Z. Tu, S. H. Chan. Appl. Therm. Engineering 149 (2019) 1408—1418. https://doi.org/10.1016/j.applthermaleng.2018.12.138
Y. Shen, B. Zhao, T. H. Kwan, Q. Yao. Energy Convers. Manage. 213 (2020) 112840—112855. https://doi.org/10.1016/j.enconman.2020.112840
J. Shen, Z. Tu, S. H. Chan. Appl. Therm. Engineering 164 (2020) 114464—114473. https://doi.org/10.1016/j.applthermaleng.2019.114464
M. Sauermoser, N. Kizilova, B. G. Pollet, S. Kjelstrup. Frontiers in Energy Research 8 (2020). https://doi.org/10.3389/fenrg.2020.00013
Z. Liu, Z. Mao, C. Wang. J. Power Sources 158 (2006) 1229—1239.https://doi.org/10.1016/j.jpowsour.2005.10.060
I. S. Hussaini, C. Y. Wang. J. Power Sources 187 (2009) 444—451. https://doi.org/10.1016/j.jpowsour.2008.11.030
J. Shen, L. Xu, H. Chang, Z. Tu, S. H. Chan. Energy Convers. Manage. 207 (2020) 112537—112545. https://doi.org/10.1016/j.enconman.2020.112537
K. Mammar, F. Saadaoui, S. Laribi. Renewable Energy Focus 30 (2019) 123—130. https://doi.org/10.1016/j.ref.2019.06.001
H. Li, Y. Tang, Z. Wang, Z. Shi, S. Wu, D. Song, J. Zhang, K. Fatih, J. Zhang, H. Wang, Z. Liu, R. Abouatallah, A. Mazza. J. Power Sources 178 (2008) 103—117. https://doi.org/10.1016/j.jpowsour.2007.12.068
E.C. Kumbur, M.M. Mench, in Encyclopedia of Electrochemical Power Sources, J. Garche Ed., Elsevier B.V., (2009), p. 828-847. ISBN 978-0-444-52745-5.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Sahra Hamdollahi, Luo Jun
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors grant to the Publisher the following rights to the manuscript, including any supplemental material, and any parts, extracts or elements thereof:
- the right to reproduce and distribute the Manuscript in printed form, including print-on-demand;
- the right to produce prepublications, reprints, and special editions of the Manuscript;
- the right to translate the Manuscript into other languages;
- the right to reproduce the Manuscript using photomechanical or similar means including, but not limited to photocopy, and the right to distribute these reproductions;
- the right to reproduce and distribute the Manuscript electronically or optically on any and all data carriers or storage media – especially in machine readable/digitalized form on data carriers such as hard drive, CD-Rom, DVD, Blu-ray Disc (BD), Mini-Disk, data tape – and the right to reproduce and distribute the Article via these data carriers;
- the right to store the Manuscript in databases, including online databases, and the right of transmission of the Manuscript in all technical systems and modes;
- the right to make the Manuscript available to the public or to closed user groups on individual demand, for use on monitors or other readers (including e-books), and in printable form for the user, either via the internet, other online services, or via internal or external networks.