OBTAINING XYLITOL BY HYDROLYSIS-HYDROGENATION OF LIQUORS DERIVED FROM SUGARCANE BAGASSE

Scientific paper

Authors

  • Julieta L. Cerioni CINDECA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CCT La Plata- CONICET, 47 Nº 257, 1900 La Plata, Argentina and Facultad de Ingeniería, Universidad Nacional de La Plata, 1 esq 47, 1900 La Plata, Argentina
  • Maria E. Vallejos IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCYP), Félix de Azara 1552, Posadas, Misiones, Argentina https://orcid.org/0000-0003-1101-884X
  • Fernando E. Felissia IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCYP), Félix de Azara 1552, Posadas, Misiones, Argentina
  • María C Area IMAM, UNaM, CONICET, FCEQYN, Programa de Celulosa y Papel (PROCYP), Félix de Azara 1552, Posadas, Misiones, Argentina https://orcid.org/0000-0002-2227-5131
  • Nora N. Nichio CINDECA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CCT La Plata- CONICET, 47 Nº 257, 1900 La Plata, Argentina and Facultad de Ingeniería, Universidad Nacional de La Plata, 1 esq 47, 1900 La Plata, Argentina
  • Gerardo F. Santori CINDECA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. CCT La Plata- CONICET, 47 Nº 257, 1900 La Plata, Argentina and Facultad de Ingeniería, Universidad Nacional de La Plata, 1 esq 47, 1900 La Plata, Argentina https://orcid.org/0000-0002-3032-4175

DOI:

https://doi.org/10.2298/CICEQ210721012C

Keywords:

Sugarcane bagasse, Hydrolysis, Hydrogenation, Xylose, Xylitol

Abstract

This work presents the study of heterogeneous catalysis of sugarcane bagasse hydrothermal treatment spent liquors using a sulfonated resin. Besides, results were compared with those obtained by a conventional route using sulfuric acid as a homogeneous catalyst. Heterogeneous catalysis is suitable for the hydrolysis of sugarcane bagasse hydrothermal liquors under mild conditions (100 °C and 6 h). The obtained maximum xylose yield was 82% due to furfural formation, which causes a xylose selectivity drop. The hydrogenation of this xylose-rich liquor at 100 °C and 3 MPa of hydrogen pressure employing a supported Ni/γ-Al2O3 produced the total conversion of xylose with a selectivity towards xylitol of 100% by using a catalyst to xylose mass ratio of 0.5. Heterogeneous catalysis in a two-step route (hydrolysis and hydrogenation) constitutes an outstanding alternative to producing xylitol from sugarcane bagasse hydrothermal spent liquors since materials can be easily separated and reused in several reaction cycles.

References

M. FitzPatrick, P. Champagne, M. F. Cunningham, R. A. Whitney, Bioresour. Technol. 101 (2010) 8915—8922. https://doi.org/10.1016/j.biortech.2010.06.125

W.E. Mabee, P.N. McFarlane, J.N. Saddler, Biomass Bioenergy 35 (2011) 4519—4529. https://doi.org/10.1016/j.biombioe.2011.06.026

M.E. Vallejos, F.E. Felissia, M. C. Area, Bioresources 12 (2017) 2058—2080. https://bioresources.cnr.ncsu.edu/wp-content/uploads/2017/02/BioRes_12_1_2058_REVIEW_Vallejos_FA_Hydrothermal_Treatm_Agro_Forest_Indust_Waste_Value_10459.pdf

Food and Agriculture Organization (FAO). Statistics Division of the FAO (FAOSTAT). http://www.fao.org/faostat/en/#data/QC, [accessed 19 February 2022].

N. Clauser, S. Gutiérrez, M.C. Area, F.E. Felissia, M.E. Vallejos. J. Renew. Mater. 6 (2018) 139—151. http://dx.doi.org/10.7569/JRM.2017.634145

H. Boussarsar, B. Rogé, M. Mathlouthi, Bioresour. Technol. 100 (2009) 6537—6542. https://doi.org/10.1016/j.biortech.2009.07.019

M. Fatih Demirbas, Appl. Energy 86 (2009) 151—161. https://doi.org/10.1016/j.biortech.2009.07.019

D.J. Hayes, Catal. Today 145 (2009) 138—151. https://doi.org/10.1016/j.cattod.2008.04.017

M.E. Vallejos, F.E. Felissia, J. Kruyeniski, M.C. Area, Ind. Crops Prod. 67 (2015) 1—6. https://doi.org/10.1016/j.indcrop.2014.12.058

L. da Costa Sousa, S. Chundawat, V. Balan, B. E. Dale, Curr. Opin. Biotechnol. 20 (2009) 339—347. https://doi.org/10.1016/j.copbio.2009.05.003

Y. Delgado Arcaño, O.D. Valmaña Garcia, D. Mandelli, W.A. Carvalho, L.A. Magalhães Pontes, Catal. Today 344 (2020) 2—14. https://doi.org/10.1016/j.cattod.2018.07.060

K. Nakajima, M. Hará, ACS Catal. 2 (2012) 1296—1304. https://doi.org/10.1021/cs300103k

S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, J. Am. Chem. Soc. 130 (2008) 12787—12793. https://doi.org/10.1021/ja803983h

M.E. Vallejos, M. Chade, E. Beda Mereles, D.I. Bengoechea, J.G. Brizuela, F.E. Felissia, M.C. Area, Ind. Crops Prod. 91 (2016) 161—169. https://doi.org/10.1016/j.indcrop.2016.07.007

P.L. Dhepe, R. Sahu, Green Chem. 12 (2010) 2153—2156. https://doi.org/10.1039/C004128A

Y. Jiang, X. Li, X. Wang, L. Meng, H. Wang, G. Peng, X. Wang, X. Mu, Green Chem. 14 (2012) 2162—2167. https://doi.org/10.1039/C2GC35306G

M. Kitano, D. Yamaguchi, S. Suganuma, K. Nakajima, H. Kato, S. Hayashi, M. Hara, Langmuir 25 (2009) 5068—5075. https://doi.org/10.1021/la8040506

B.T. Kusema, G. Hilmann, P. Mäki-Arvela, S. Willför, B. Holmbom, T. Salmi, D.Y. Murzin, Catal. Lett. 141 (2011) 408—412. https://doi.org/10.1007/s10562-010-0530-x

Y. Ogaki, Y. Shinozuka, T. Hara, N. Ichikuni, S. Shimazu, Catal. Today 164 (2011) 415—418. https://doi.org/10.1016/j.cattod.2010.11.002

M. Okamura, A. Takagaki, M. Toda, J.N. Kondo, K. Domen, T. Tatsumi, M. Hara, S. Hayashi, Chem. Mater. 18 (2006) 3039—3045. https://doi.org/10.1021/cm0605623

A. Onda, T. Ochi, K. Yanagisawa, Green Chem. 10 (2008) 1033—1037. https://doi.org/10.1039/B808471H

R. Sahu, P.L. Dhepe, ChemSusChem 5 (2012) 751—761. https://doi.org/10.1002/cssc.201100448

L. Zhou, M. Shi, Q. Cai, L. Wu, X. Hu, X. Yang, C. Chen, J. Xu, Microporous Mesoporous Mater. 169 (2013) 54—59. https://doi.org/10.1016/j.micromeso.2012.10.003

P.D. Cará, M. Pagliaro, A. Elmekawy, D.R. Brown, P. Verschuren, N.R. Shiju, G. Rothenberg, Catal. Sci. Technol. 3 (2013) 2057—2061. https://doi.org/10.1039/C3CY20838A

R. Ormsby, J. R. Kastner, J. Miller, Catal. Today 190 (2012) 89—97. https://doi.org/10.1016/j.cattod.2012.02.050

J.P. Mikkola, R. Sjöholm, T. Salmi, P. Mäki-Arvela, Catal. Today 48 (1999) 73—81. https://doi.org/10.1016/S0920-5861(98)00360-5

J. Wisniak, M. Hershkowitz, R. Leibowitz, S. Stein, Ind. Eng. Chem. Prod. Res. Dev. 13 (1974) 75—79. https://doi.org/10.1021/i360049a015

M. Yadav, D.K. Mishra, J. Hwang, Appl. Catal., A 425 (2012) 110—116. https://doi.org/10.1016/j.apcata.2012.03.007

J. Lee, Y. Xub, G.W. Huber, Appl. Catal., B 140 (2013) 98—107. https://doi.org/10.1016/j.apcatb.2013.03.031

J. Wisniak, M. Hershkowitz, S. Stein, Ind. Eng. Chem. Prod. Res. Dev. 13 (1974) 232—236. https://doi.org/10.1021/i360052a004

F. Devred, A.H. Gieskea, N. Adkins, U. Dahlborg, C.M. Bao, M. Calvo-Dahlborg, J.W. Bakker, B.E. Nieuwenhuys, Appl. Catal., A 356 (2009) 154—161. https://doi.org/10.1016/j.apcata.2008.12.039

A. Gervasini, J. Fenyvesi, A. Auroux, Catal. Lett. 43 (1997) 219—228. https://doi.org/10.1023/A:1018979731407

G. Busca, Catal. Today 226 (2014) 2—13. https://doi.org/10.1016/j.cattod.2013.08.003

D.S. Brands, U.A. Sai, E.K. Poels, A. Bliek, J. Catal. 186 (1999) 169—180. https://doi.org/10.1006/jcat.1999.2553

L.S. Carvalho, C.L. Pieck, M.L. Rangel, N.S. Figoli, C.R. Vera, J.M. Parera, Appl. Catal., A 269 (2004) 105—116. https://doi.org/10.1016/j.apcata.2004.04.006

A. Yamaguchi, O. Sato, N. Mimura, M. Shirai, Catal. Today 265 (2016) 199—202. https://doi.org/10.1016/j.cattod.2015.08.026

L.S. Ribeiro, J.J. Delgado, J.J. de Melo Órfão, M.F.R. Pereira, RSC Adv. 6 (2016) 95320—95327. https://doi.org/10.1039/C6RA19666G

L. Venkateswar Rao, J.K. Goli, J. Gentela, S. Koti, Bioresour. Technol. 213 (2016), 299—310. https://doi.org/10.1016/j.biortech.2016.04.092

O.A. Ogunyewo, P. Upadhyay, G.H. Rajacharya, O. E. Okereke, L. Faas, L.D. Gómez, S. J. McQueen‑Mason, S. S. Yazdani, Biotechnol. Biofuels. 14 (2021), 1—17. https://doaj.org/article/aeeb042f69924f6787414bdcf3e672ab

A.F. Hernández-Pérez, A.C. Chaves-Villamil, P.V. de Arruda, J.C. dos Santos, M. das G. de A. Felipe, Waste Biomass Valorization 11 (2020), 4215—4224. https://doi.org/10.1007/s12649-019-00742-6

M.S.S, Reshamwala, A.M. Lali, Biotechnol. Prog. 36 (2020), e2972. https://doi.org/10.1002/btpr.2972

G. Guirimand, K. Inokuma, T. Bamba, M. Matsuda, K. Morita, K. Sasaki, C. Ogino, J.-G. Berrin, T. Hasunuma, A. Kondo, Green Chem. 21 (2019), 1795—1808. https://doi.org/10.1039/C8GC03864C

Graphical Abstract

Published

16.06.2022 — Updated on 27.10.2022

Issue

Section

Articles

How to Cite

OBTAINING XYLITOL BY HYDROLYSIS-HYDROGENATION OF LIQUORS DERIVED FROM SUGARCANE BAGASSE: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 29(1), 43-52. https://doi.org/10.2298/CICEQ210721012C