ADSORPTIVE REMOVAL OF CRYSTAL VIOLET DYE FROM AQUEOUS SOLUTION ONTO COCONUT COIR

Scientific paper

Authors

  • Nafees Ahmed Department of Chemistry, Jagannath University, 9-10, Chittaranjan Avenue, Dhaka-1100, Bangladesh https://orcid.org/0000-0002-4339-966X
  • Md. Yasin Hossain Department of Chemistry, Jagannath University, 9-10, Chittaranjan Avenue, Dhaka-1100, Bangladesh
  • Joyanta Kumar Saha Department of Chemistry, Jagannath University, 9-10, Chittaranjan Avenue, Dhaka-1100, Bangladesh https://orcid.org/0000-0002-5592-2577
  • Mohammad Al Mamun Department of Chemistry, Jagannath University, 9-10, Chittaranjan Avenue, Dhaka-1100, Bangladesh and Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia https://orcid.org/0000-0003-2881-8034
  • A. K. M. Lutfor Rahman Department of Chemistry, Jagannath University, 9-10, Chittaranjan Avenue, Dhaka-1100, Bangladesh and Nanotechnology https://orcid.org/0000-0001-7258-3506
  • Jamal Uddin Center for Nanotechnology, Chemistry and Nanotechnology, Department of Natural Sciences, Coppin State University, Science and Technology Center, Suite 200, Room 228 2500 W. North Avenue, Baltimore, MD 21216, USA
  • Abdul Awal Department of Chemistry, Jagannath University, 9-10, Chittaranjan Avenue, Dhaka-1100, Bangladesh and Nanotechnology https://orcid.org/0000-0003-2889-5128
  • Md. Shajahan Department of Chemistry, Jagannath University, 9-10, Chittaranjan Avenue, Dhaka-1100, Bangladesh and Nanotechnology https://orcid.org/0000-0001-6968-5755

DOI:

https://doi.org/10.2298/CICEQ211203009A

Keywords:

Coconut coir, sodium chlorite, crystal violet, adsorption kinetics, adsorption mechanism, density functional theory

Abstract

The untreated and sodium chlorite-treated coconut coir was implemented to remove crystal violet (CV) dye from an aqueous solution by batch adsorption experiments. The adsorption capacity, equilibrium time, and adsorption kinetics of CV on both adsorbents were regulated by the pH of the dye solution. High pH favors the comparative adsorption capacity for both adsorbents. In contrast, the untreated coconut coir (UT-CC) shows higher adsorption efficiency (9.61 mg g-1) than sodium chlorite-treated coconut coir (SCT-CC) at low pH. At lower pH (2.00), the equilibrium was established within 60 min by both adsorbents. However, the quick attainment of the equilibrium (30 min) was observed using both the adsorbents at higher pH (8.00). The isotherm data for both the adsorbents was found to have better agreement with the Freundlich than the Langmuir model at pH 8.00. The kinetic data was well-fitted with Ho’s pseudo-second-order model. Both adsorbents were characterized by FTIR and SEM to get evidence for the proposed adsorption mechanism. Density functional theory (DFT) also supports this result which illustrates the adsorption of CV on lignin of CC with the adsorption energy -51.16 kJ/mol at the B3LYP/6-31(d,p) level of theory.

References

J.H. Weisburger, Mutat. Res. 506-507 (2002) 9—20. https://doi.org/10.1016/S0027-5107(02)00147-1

R.O. Alves de Lima, A. P. Bazo, D.M.F. Salvadori, C. M. Rech, O. Danielle de Palma, U. Gisela de Aragao, Mut. Res. 626 (2007) 53—60. https://doi.org/10.1016/j.mrgentox.2006.08.002

N. Mathur, P. Bhatnagar, P. Sharma, Univ. J. Environ. Res. Technol. 2(2) (2012) 1—18. https://www.environmentaljournal.org/2-2/ujert-2-2-1.pdf

B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Biotechnol. Res. Innov. 3(2) (2019) 275—290. https://doi.org/10.1016/j.biori.2019.09.001

M .Sudha, A. Saranya, G. Selvakumar, N. Sivakumar, Int. J. Curr. Microbiol. App. Sci. 3(2) (2014) 670—690. https://www.ijcmas.com/vol-3-2/M.Sudha,%20et%20al.pdf

S. P. Upadhyay, J. Environ. Res. Dev. 3(2) (2008) 490—494.http://www.jerad.org/ppapers/V003N002/V003N002P0490.pdf

A. Gurses, C. Dogar, M. Yalcin, M. Acikyildiz, R. Bayrak, S. Karaca, J. Hazard. Mater. 131(6) (2006) 217—228. https://doi.org/10.1016/j.jhazmat.2005.09.036

C. Allegre, P. Moulin, M. Maisseu, F. Charbit, J. Membr. Sci. 269(4) (2006) 15—34. https://doi.org/10.1016/j.memsci.2005.06.014

K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Bioresour. Technol. 76 (2001) 63—65. https://doi.org/10.1016/S0960-8524(00)00072-9

J.A. Ramsay, T. Nguyen, Biotech. Lett. 24(21) (2002) 1757—1761. https://doi.org/10.1023/A:1020644817514

K.B. Hu, Y.L. Wang, C.R. Li, Y.Q. Zheng, Acta Sci. Circumstantiae 30(11) (2010) 2174—2183. http://caod.oriprobe.com/articles/25753718/Fractal_characteristics_of_adsorption_of_direct_dye_compounds_onto_mod.htm

E. Bascetin, G. Atun, J. Chem. Eng. Data 55 (2010) 783—788. https://doi.org/10.1021/je9004678

M.L. Zanota, N. Heymans, F. Gilles, B.L. Su, M. Frer, G.D. Weireld, J. Chem. Eng. Data 55 (2010) 448—458. https://doi.org/10.1021/je900539m

S. Madhavakrishnan, K. Manickavasagam, R. Vasanthakumar, K. Rasappan, R. Mohanraj, S. Pattabhi, e-J. Chem. 6(4) (2009) 1109—1116. https://doi.org/10.1155/2009/764197

A. Adak, M. Bandyopadhyay, A. Pal, Sep. Purif. Technol. 44(2) (2005) 139—144. https://doi.org/10.1016/j.seppur.2005.01.002

C.D. Lin, C.T. Chen, Anim. Feed Sci. Technol. 54 (1995) 217—226. https://doi.org/10.1016/0377-8401(94)00760-7

C.L. Hall, P.B. Hamilton, Poult. Sci. 6 (1982) 62—66. https://doi.org/10.3382/ps.0610062

R.L. Berrios, J.L. Arbiser, Dermatol. Clin. 29(1) (2011) 69—73. https://doi.org/10.1016/j.det.2010.08.009

A. Pona, E.Y. Quan, A. Cline, S.R. Feldman, Dermatol Online J. 26(5) (2020) 13030.

https://doi.org/10.5070/D3265048772

P. Das, S. Chakraborty, S. Chowdhury, Arch. Environ. Sci. 6 (2012) 57—61. https://aes.asia.edu.tw/Issues/AES2012/SahaPD2012-1.pdf

A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, J. Colloid Interface Sci. 343 (2009) 463—473. https://doi.org/10.1016/j.jcis.2009.11.060

Y. Lin, X. He, G. Han, Q. Tian, W. Hu, J. Environ. Sci. 23(12) (2011) 2055—2062. https://doi.org/10.1016/S1001-0742(10)60643-2

U.J. Etim, E. Inam, S.A. Umoren, U.M. Eduok, Int. J. Environ. Bioenergy 5(2) (2013) 62—79. https://modernscientificpress.com/Journals/ViewArticle.aspx?gkN1Z6Pb60HNQPymfPQlZF418S3XB/1Y/g5SJIrtEz9tnj9x30LtKANTNh7z40/x

J. de Souza Macedo, C.J. Nivan B. da, E.A. Luis, S.V. Eunice F. da, R.C. Antonio, F.G. Iara de, V.C. Neftali L., S.B. Ledjane, J. Colloid Interface Sci. 298 (2006) 515—522. https://doi.org/10.1016/j.jcis.2006.01.021

L. Yi, W. Jintao, Z. Yian, W. Aiqin, Chem. Eng. J. 184 (2012) 248—255.https://doi.org/10.1016/j.cej.2012.01.049

D.L. Pavia, G.M. Lampman, G.S. Kriz, Introduction to Spectroscopy: A Guide for Students of Organic Chemistry, 3rd Ed, Thomson Learning, (2001), p. 26. https://www.hdki.hr/_download/repository/Pavia-Introduction-to-Spectroscopy%5B1%5D.pdf

S. Keshk, W. Suwinarti, K. Sameshima, Carbohydr. Polym. 65 (2006) 202—206. https://doi.org/10.1016/j.carbpol.2006.01.005

A. Saeed, M. Sharif, M. Iqbal, J. Hazard. Mater. 179(1-3) (2010) 564—572. https://doi.org/10.1016/j.jhazmat.2010.03.041

R. Ahmad, J. Hazard. Mater. 171(1-3) (2009) 767—773. https://doi.org/10.1016/j.jhazmat.2009.06.060

S. Iman, S. Mahboube, S. Abolfazl, H. Mohsen, H. Saeed, Arab. J. Sci. Eng. 41 (2016) 2611—2621. https://doi.org/10.1007/s13369-016-2109-3

M. Chandrasekaran, M.S. Vaiyazhipalayam, T. Marimuthu, J. Taiwan Inst. Chem. Eng. 63 (2016) 354—362. https://doi.org/10.1016/j.jtice.2016.03.034

A.L. Prasad, T. Shanti, Sustain. Environ. Res. 22(2) (2012) 113—122.

S.H. Maron, C.F. Prutton, Principles of Physical Chemistry, MacMiillan Publishing Co., (1972), p. 813.

R.A. Latour, J. Biomed. Mater. Res. A: 103A: (2015) 949—958. https://doi.org/10.1002/jbm.a.35235

M.B. Yahia, Y.B. Torkia, S. Knani, M.A. Hachicha, M. Khalfaoui, A.B. Lamine, Adsorpt. Sci. Technol. 31(4) (2013) 341—357. https://doi.org/10.1260/0263-6174.31.4.341

R.P.H, Gasser, An Introduction to Chemisorption and Catalysis by Metals, Oxford University Press, (1987), p. 12. ISBN 0198552718

N. Ayawei, S.S. Angaye, D. Wankasi, E.D. Dikio, Open J. Phys. Chem. 5(3) (2015a) 56—70. https://doi.org/10.4236/ojpc.2015.53007

N. Ayawei, A.T. Ekubo, D. Wankasi, E.D. Dikio, Orient. J. Chem. 31(30) (2015b) 1307—1318. http://dx.doi.org/10.13005/ojc/310307

S. Muhammad, T. Hajira, K. Jawariya, H. Uzma, S. Atika, Ultrason. Sonochem. 34 (2017) 600—608. https://doi.org/10.1016/j.ultsonch.2016.06.022

S.R. Shirsath, A.P. Patil, B.A. Bhanvase, S.H. Sonawane, J. Environ. Chem. Eng. 3(2) (2015) 1152—1162. https://doi.org/10.1016/j.jece.2015.04.016

Y. Ho, G. McKay, Process Biochem. 34(5) (1999) 451—465. https://doi.org/10.1016/S0032-9592(98)00112-5

A.D. Becke, J. Chem. Phys. 98(7) (1993) 5648—5652. https://doi.org/10.1063/1.464913

C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37(2) (1988) 785—789. https://doi.org/10.1103/physrevb.37.785

J.K. Saha, M.S. Hossain, M.K. Ghosh, Struct. Chem. 30 (2019) 1427—1436. https://doi.org/10.1007/s11224-018-1272-4

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, et. al., Gaussian 16 Rev. C.01, Wallingford, CT (2016).

Graphical Abstract

Downloads

Published

09.06.2022 — Updated on 27.10.2022

Issue

Section

Articles

How to Cite

ADSORPTIVE REMOVAL OF CRYSTAL VIOLET DYE FROM AQUEOUS SOLUTION ONTO COCONUT COIR: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 29(1), 11-22. https://doi.org/10.2298/CICEQ211203009A

Similar Articles

11-20 of 49

You may also start an advanced similarity search for this article.