ELECTROCHEMICAL HARVESTING OF CHLORELLA SP.: ELECTROLYTE CONCENTRATION AND INTERELECTRODE DISTANCE

Scientific paper

Authors

  • Atheer M. Al-Yaqoobi Department of chemical engineering, Collage of engineering, University of Baghdad, Iraq https://orcid.org/0000-0001-9458-2723
  • Muna N. Al-Rikabey Department of biochemical engineering, Al-Khwarizmi collage of engineering, University of Baghdad, Iraq

DOI:

https://doi.org/10.2298/CICEQ210815010A

Keywords:

Electrochemical harvesting, Electrocoagulation, Chlorella Sp., Non-sacrificial electrode, Energy consumption

Abstract

Two modes of electrochemical harvesting for microalgae were investigated in the current work. A sacrificial anode (aluminum) was used to study the electrocoagulation-flotation process, and a nonsacrificial anode (graphite) was used to investigate the electroflotation process. The study inspected the effect of chloride ions concentration and the interelectrode distance on the performance of the electrochemical harvesting processes. The results demonstrated that both electrodes achieved maximum harvesting efficiency with a 2 g/L NaCl concentration. Interestingly, by increasing the NaCl concentration to 5 g/L, the harvesting efficiency reduced dramatically to its lowest value. Generally, the energy consumption decreased with increasing of NaCl concentration. Moreover, the energy consumption achieved with aluminum anodes is lower than that achieved with graphite. However, by increasing the gap between the electrodes from 15 mm to 30 mm, the time required to achieve the maximum efficiency doubled, and energy consumption increased consequently.

References

S.R. Medipally, F.M. Yusoff, S. Banerjee, M. Shariff, J. Hazard. Mater. 2015 (2015) 519—513. https://doi.org/10.1155/2015/519513

S.M.A. Mobin, F. Alam, in Application of Thermo-fluid Processes in Energy Systems, M.M.K. Khan, A.A. Chowdhury, N.M.S. Hassan, Springer, Singapore, (2018) p. 83—108. ISBN-13: 978-9811006951

M.G. Saad, N.S. Dosoky, M.S. Zoromba, H.M. Shafik, Energies 12 (2019) 19—20. https://doi.org/10.3390/en12101920

D. Moreira, J.C.M. Pires, Bioresour. Technol. 215 (2016) 371—379. https://doi.org/10.1016/j.biortech.2016.03.060

B. Behera, K. Nageshwari, M. Darshini, and P. Balasubramanian, Water Sci. Technol. 82 (2020) 1217—1226. https://doi.org/10.2166/wst.2020.143

N. Krishnamoorthy et al., J. Environ. Chem. Eng. 9 (2021) 105875. https://doi.org/10.1016/j.jece.2021.105875

B. Behera and P. Balasubramanian, Bioresour. Technol. 283 (2019) 45—52. https://doi.org/10.1016/j.biortech.2019.03.070

J. Kim, G.Yoo, H. Lee, J. Lim, K. Kim, C.W. Kim, M.S.Park, J.W. Yang, Biotechnol. Adv. 31 (2013) 862—876. https://doi.org/10.1016/j.biotechadv.2013.04.006

R. Henderson, S.A. Parsons, B. Jefferson, Water Res. 42 (2008) 1827—1845. https://doi.org/10.1016/j.watres.2007.11.039

J.S. Tan, S.Y. Lee, K.W. Chew, M.K. Lam, J.W. Lim, S.H. Ho, P.L. Show, Bioengineered 11 (2020) 116—129. https://doi.org/10.1080/21655979.2020.1711626

I. Kabdaşlı, I. Arslan-Alaton, T. Ölmez-Hancı, O. Tünay, Environ. Technol. Rev. 1 (2012) 2—45. https://doi.org/10.1080/21622515.2012.715390

A. Alyaqoobi, J. Eng. 16 (2010) 6198—6205. https://www.iasj.net/iasj/download/68d9eca9c8fadc2b

B. Fadhil, A.M. Ghalib, J. Eng. 17 (2011) 441—447. https://www.iasj.net/iasj/download/3fd1564d5c9c7a51

L. Xu, F. Wang, H.Z. Li, Z.M. Hu, C. Guo, C.Z. Liu, J. Chem. Technol. Biotechnol. 85 (2010) 1504—1507. https://doi.org/10.1002/jctb.2457

O. Abdelwahab, N.K. Amin, E.S.Z. El-Ashtoukhy, J. Hazard. Mater. 163 (2009) 711—716. https://doi.org/10.1016/j.jhazmat.2008.07.016

X. Zhu, J. Ni, P. Lai, Water Res. 43 (2009) 4347—4355. https://doi.org/10.1016/j.watres.2009.06.030

N. Uduman, V. Bourniquel, M.K. Danquah, A.F.A. Hoadley, Chem. Eng. J. 174 (2011) 249—257. https://doi.org/10.1016/j.cej.2011.09.012

R. Misra, A. Guldhe, P. Singh, I. Rawat, T.A. Stenström, F. Bux, Bioresour. Technol. 176 (2015) 1—7. https://doi.org/10.1016/j.biortech.2014.11.014

B.G. Ryu, J. Kim, J.I. Han, K. Kim, D. Kim, B.K. Seo, C.M. Kang, J.W. Yang, Algal Res. 31 (2018) 497—505. https://doi.org/10.1016/j.algal.2017.06.012

I. Branyikova, G. Prochazkova, T. Potocar, Z. Jezkova, T. Branyik, Fermentation 4 (2018) 93. https://doi.org/10.3390/fermentation4040093

R. Misra, A. Guldhe, P. Singh, I. Rawat, F. Bux, Chem. Eng. J. 255 (2014) 327—333. https://doi.org/10.1016/j.cej.2014.06.010

A. Al-Yaqoobi, M. Al-Rikabey, M. Al-Mashhadani, Chem. Ind. Chem. Eng. Q. 27 (2021) 121—130. https://doi.org/10.2298/CICEQ191213031A

P. Cañizares, M. Carmona, J. Lobato, F. Martínez, M.A. Rodrigo, Ind. Eng. Chem. Res. 44 (2005) 4178—4185. https://doi.org/10.1021/ie048858a

A.K. Golder, A.N. Samanta, S. Ray, Sep. Purif. Technol. 53 (2007) 33—41. https://doi.org/10.1016/j.seppur.2006.06.010

G. Chen, Sep. Purif. Technol. 38 (2004) 11—41. https://doi.org/10.1016/j.seppur.2003.10.006

S. Gao, M. Du, J. Tian, J. Yang, J. Yang, F. Ma, J. Nan, J. Hazard. Mater. 182 (2010) 827—834. https://doi.org/10.1016/j.jhazmat.2010.06.114

S. Gao, J. Yang, J. Tian, F. Ma, G. Tu, M. Du, J. Hazard. Mater. 177 (2010) 336—343. https://doi.org/10.1016/j.jhazmat.2009.12.037

J. Sun, J. Wang, X. Pan, H. Yuan, Int. J. Mol. Sci. 16 (2015) 13158—13171. https://doi.org/10.3390/ijms160613158

M. Valica, M. Pipíška, S. Hostin, Desalin. Water Treat. 138 (2019) 190—199. https://doi.org/10.5004/dwt.2019.23330

K.P. Drees, M. Abbaszadegan, R.M. Maier, Water Res. 37 (2003) 2291—2300. https://doi.org/10.1016/S0043-1354(03)00009-5

S. Monasterio, F. Dessì, M. Mascia, A. Vacca, S. Palmas, Chem. Eng. Trans. 41 (2014) 163—168. https://doi.org/10.3303/CET1441028

D. Vandamme, S.C.V. Pontes, K. Goiris, I. Foubert, L.J.J. Pinoy, K. Muylaert, Biotechnol. Bioeng. 108 (2011) 2320—2329. https://doi.org/10.1002/bit.23199

G. Mouedhen, M. Feki, M.D.P. Wery, H.F. Ayedi, J. Hazard. Mater. 150 (2008) 124—135. https://doi.org/10.1016/j.jhazmat.2007.04.090

P. Cañizares, F. Martínez, C. Jiménez, C. Sáez, M.A. Rodrigo, J. Hazard. Mater. 151 (2008) 44—51. https://doi.org/10.1016/j.jhazmat.2007.05.043

A. Aitbara, M. Cherifi, S. Hazourli, J.P. Leclerc, Desalin. Water Treat. 57 (2016) 3395—3404. https://doi.org/10.1080/19443994.2014.989411

B. Zeboudji, N. Drouiche, H. Lounici, N. Mameri, N. Ghaffour, Sep. Sci. Technol. 48 (2013) 1280—1288. https://doi.org/10.1080/01496395.2012.731125

A. Mohammed, M. Al-Mureeb, J. Eng. 16 (2010) 5811-5821.https://www.iasj.net/iasj/download/a5123fae2ba58b93

Graphical Abstract

Downloads

Published

09.06.2022 — Updated on 27.10.2022

Issue

Section

Articles

How to Cite

ELECTROCHEMICAL HARVESTING OF CHLORELLA SP.: ELECTROLYTE CONCENTRATION AND INTERELECTRODE DISTANCE: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 29(1), 23-29. https://doi.org/10.2298/CICEQ210815010A

Similar Articles

1-10 of 67

You may also start an advanced similarity search for this article.