GREEN GRAPE MARC BIOSORBENTS PREPARATION FOR MERCURY REMOVAL IN AQUEOUS MEDIA

Scientific paper

Authors

  • Roberta Del Sole Department of Engineering for Innovation, University of Salento, via per Monteroni Km 1, 73100, Lecce, Italy https://orcid.org/0000-0003-2542-7396
  • Alvaro Maggio Department of Engineering for Innovation, University of Salento, via per Monteroni Km 1, 73100, Lecce, Italy https://orcid.org/0000-0002-3196-9637
  • Lucia Mergola Department of Engineering for Innovation, University of Salento, via per Monteroni Km 1, 73100, Lecce, Italy https://orcid.org/0000-0002-5327-2216

DOI:

https://doi.org/10.2298/CICEQ201014008S

Keywords:

adsorption isotherms, citric acid, Hg(II) removal, green waste biosorbent, kinetic study, grape marc

Abstract

In this study, grape marc waste from Negroamaro (a South of Italy vine variety) winery production was used to prepare biosorbents for Hg(II) removal in aqueous media. A green approach was used to develop a proper biosorbent through two different grape marc washing procedures. In particular, the common chloridric acid and the greener citric acid were evaluated. The biosorbent prepared using citric acid as a washing agent (GM-CA) gave similar results to the biosorbent washed with HCl (GM-HCl) with a maximum adsorption capacity of 36.39 mg g-1. Isothermal studies revealed heterogeneous physical adsorption of Hg(II) on the biosorbents. Moreover, FTIR analysis of the grape marc-based biosorbent without and with Hg(II) confirmed ionic interactions in the biosorbent that fit with a pseudo-second-order kinetic model. Furthermore, no significant adsorption on the biosorbent was observed when two other heavy metals, copper(II) and nickel(II), previously studied for similar sorbents, were considered. Finally, the reusability of GM-CA biosorbent was also demonstrated over three cycles. Thus, the green preparation approach used in this work can be considered suitable for developing grape marc-based biosorbents.

References

WHO, Inorganic mercury - environmental health criteria 118. World Health Organization, International Programme on Chemical Safety, Geneva, Switzerland, 1991. https://apps.who.int/iris/bitstream/handle/10665/40626/IPCS_EHC_118.pdf?sequence=1

J.G. Wiener, D.P. Krabbenhoft, G.H. Heinz, A.M. Scheuhammer, Ecotoxicology of mercury. In: Handbook of Ecotoxicology, Hoffman D. J., Rattner B. A., Burton G. A., Cairns J. (Eds), 2nd Ed., Lewis Publishers, Boca Raton (2003), pp 409—463. https://doi.org/10.1201/9781420032505.ch16

B. Fernandes Azevedo, L. Barros Furieri, F.M. Peçanha, G. A. Wiggers, P. Frizera Vassallo, M. Ronacher Simões, J. Fiorim, P. Rossi de Batista, M. Fioresi, L. Rossoni, L. Stefanon, M.J. Alonso, M. Salaices, D. Valentim Vassallo, J. Biomed. Biotechnol. 2012 (2012) 949048. https://doi.org/10.1155/2012/949048

D.M. Manohar, K.A. Krishnan, T.S. Anirudhan, Water Res. 36 (2002) 1609—1619. https://doi.org/10.1016/S0043-1354(01)00362-1

X. Lu, X. Huangfu, J. Ma, J. Hazard. Mater. 280 (2014) 71—78. https://doi.org/10.1016/j.jhazmat.2014.07.056

M.A. Didi, B. Medjahed, W. Benaoudam, Am. J. Anal. Chem. (2013) 40—47. https://doi.org/10.4236/ajac.2013.47A006

L. Mergola, S. Scorrano, E. Bloise, M.P. Di Bello, M. Catalano, G. Vasapollo, R. Del Sole, Polym. J. 48 (2016) 73—79. https://doi.org/10.1038/pj.2015.79

M.W. Franco, L.A. Mendes, C.C Windmöller., K.A.F Moura., L.A.G. Oliveira, F.A.R. Barbosa, Water Air Soil Pollut. 229 (2018) 127. https://doi.org/10.1007/s11270-018-3782-5

A. Bhatnagar, M. Sillanpää, A. Witek-Krowiak, Chem. Eng. J., 270 (2015) 244—271. https://doi.org/10.1016/j.cej.2015.01.135

M. Erhayem, F. Al-Tohami, R. Mohamed, K. Ahmida, Am. J. Anal. Chem. 6 (2015) 1—10. https://doi.org/10.4236/ajac.2015.61001

F.E. Arias Arias, A. Beneduci, F. Chidichimo, E. Furia, S. Straface, Chemosphere. 180 (2017) 11—23. https://doi.org/10.1016/j.chemosphere.2017.03.137

N.M. Mora Alvarez, J.M. Pastrana, Y. Lagos, J.J. Lozada, Sustain. Chem. Pharm. 10 (2018) 60—70. https://doi.org/10.1016/j.scp.2018.09.004

J. Aurand,2018 OIV statistical report on world vitiviniculture 2018 world vitiviniculture situation. http://www.oiv.int/public/medias/6371/oiv-statistical-report-on-world-vitiviniculture-2018.pdf (accessed 3 March 2020).

M. A. Bustamante, R. Moral, C. Paredes, A. Pérez-Espinosa, J. Moreno-Caselles, M.D. Pérez-Murcia, Waste Manag. 28 (2008) 372—380. https://doi.org/10.1016/j.wasman.2007.01.013

R.A. Mulhack, R. Potumarthi, D.W. Jeffery, Waste Manag. 72 (2018) 99—118. https://doi.org/10.1016/j.wasman.2017.11.011

M.S Rodríguez-Cruz., E. Herrero-Hernández, J.M. Ordax, J.M. Marín-Benito, K. Draoui, M.J. Sánchez-Martín, Int. J. Environ. Anal. Chem. 92 (2012) 933—948. https://doi.org/10.1080/03067319.2011.609933

R. Portinho, O. Zanella, L.A. Féris, Grape stalk application for caffeine removal through adsorption. J. Environ. Manage. 202 (2017) 178—187. https://doi.org/10.1016/j.jenvman.2017.07.033

V. Grudić, J. Šćepanović, I. Bošković, 2015 Chem. Ind. Chem. Eng. Q. 21(2015) 285—293. https://doi.org/10.2298/CICEQ140418027G

I. Villaescusa, N. Fiol, M. Martínez, N. Miralles, J. Poch, J. Serarols, Water Res. 38 (2004) 992—1002. https://doi.org/10.1016/j.watres.2003.10.040

C. Liu, D. Pujol, N. Fiol, M.À. Olivella, F. de la Torre, J. Poch, I. Villaescusa, Water Air Soil Pollut. 226 (2015) 2006. https://doi.org/10.1007/s11270-014-2006-x

R. Chand, K. Narimura, H. Kawakita, K. Ohto, T. Watari, K. Inoue, J. Hazard. Mater. 163 (2009) 245—2502. https://doi.org/10.1016/j.jhazmat.2008.06.084

A.O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, IOSR-JAC. 3 (2012) 38—45. https://doi.org/10.9790%2F5736-0313845

M.P. Di Bello, L. Mergola, S. Scorrano, R. Del Sole, Polym. Int. 66 (2017) 1055—1063. https://doi.org/10.3390/ma10101133

V.B.H. Dang, H.D. Doan, T. Dang-Vu, A. Lohi, Bioresour. Technol. 100 (2009) 211—219. https://doi.org/10.1016/j.biortech.2008.05.031

F. Lionetto, R. Del Sole, D. Cannoletta, G. Vasapollo, A. Maffezzoli, Materials 5 (2012) 1910—1922. https://doi.org/10.3390/ma5101910

S. Zmora-Nahuma, Y. Hadarb, Y. Soil Biol Biochem, 39 (2007) 1263—1276. https://doi.org/10.1016/j.soilbio.2006.12.017

N. Naowanat, N. Thouchprasitchai, S. Pongstabodee, J. Environ. Manage. 169 (2016) 103—115. https://doi.org/10.1016/j.jenvman.2015.12.024

Graphical Abstract

Published

26.05.2022 — Updated on 27.10.2022

Issue

Section

Articles

How to Cite

GREEN GRAPE MARC BIOSORBENTS PREPARATION FOR MERCURY REMOVAL IN AQUEOUS MEDIA: Scientific paper. (2022). Chemical Industry & Chemical Engineering Quarterly, 29(1), 1-10. https://doi.org/10.2298/CICEQ201014008S

Similar Articles

81-90 of 124

You may also start an advanced similarity search for this article.