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Article Highlights  

• A novel process modeling approach in kombucha production  is conducted 

• Box-Behnken experimental design was conducted based on three operating factors 

• The ANN model showed to be adequate for the prediction of output kombucha factors 

 
Abstract  

Kombucha as a tea-based fermented beverage has become progressively 

widespread, mainly in the functional food market, because of health-

improving benefits. As part of a daily diet for adults and children, kombucha 

was a valuable non-alcoholic drink containing beneficial mixtures of organic 

acids, minerals, vitamins, proteins, polyphenols, etc. The influence of the 

specific surface area of the vessel, the inoculum size, and the initial tea 

concentration as operating factors and fermentation time as output variable 

on the efficiency of kombucha fermentation was examined. The focus of this 

study is optimization and standardization of kombucha fermentation 

conditions using Box-Behnken experimental design and applying an 

artificial neural network (ANN) predictive model for the fermentation 

process. The Broyden-Fletcher-Goldfarb-Shanno iterative algorithm was 

used to accelerate the calculation. The obtained ANN models for the pH 

value and titratable acidity showed good prediction capabilities (the r2 values 

during the training cycle for output variables were 0.990 and 0.994, 

respectively). Predictive ANN modeling has been proven effective and 

reliable in establishing the optimum kombucha fermentation process using 

the selected operating factors. 

Keywords: experimental design, fermentation improvement, kombucha 
production, mathematical modeling. 

 
 

High beverage consumption worldwide has 

opened the opportunity to develop different traditional 

drinks as part of the functional food concept. In recent 

years, scientific and industrial focus on the extremely 

valuable functional drink has further developed and 

improved kombucha fermentation [1]. The worldwide 

trends in kombucha production have focused on 

developing health-improving beverages based on 

different types of tea that contain an advantageous 

number of promising bioactive compounds. Optimiza- 
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tion of the kombucha production process became the 

main topic of several researchers because of its large 

importance from the definition of the chemical 

composition of this functional beverage but also from an 

industrial point of view [2—5]. 

Kombucha is typically prepared by fermenting 

sweetened (with sucrose) black or green tea inoculated 

with tea fungus pellicle or previously fermented broth at 

100-200 mL/L. During kombucha fermentation, the 

formation of a floating pellicle of microbial cellulose is 

expected and very typical [3]. As a result, reduced 

cholesterol levels and blood pressure, influenced weight 

loss, improved liver and gastric functions, reduced 

kidney calcification, and increased vitality can be some 

health-improving benefits attributed to kombucha 

consumption [4—6]. 

The tea fungus is a consortium of acetic acid bac- 
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teria (AAB) (Gluconacetobacterxylinum, previously 

known as Acetobacter xylinus and, more recently, as 

Komagataeibacter xylinus, is the primary and best-

studied bacteria in kombucha) and yeasts (species of 

the genera Saccharomyces, Torulopsis, Pichia, 

Brettanomyces, Zygosaccharomyces, Candida, and 

Saccharomycoides) [7—11]. It is well known that the 

microbial community may vary between different 

kombucha cultures across the globe depending upon 

the source of the inoculum used. The role of yeasts in 

kombucha fermentation is to hydrolyze sucrose from 

the cultivation medium to glucose and fructose and 

metabolize these monosaccharides to ethanol, which 

is further oxidized to acetic acid by AAB. However, 

AAB cannot uptake sucrose alone because of the lack 

of enzymes for the extracellular hydrolysis of sucrose 

or its transport into the cell. Also, AAB uses yeast-

derived glucose to synthesize gluconic acid and 

bacterial cellulose in the form of a pellicle, commonly 

described as the "fungus" [7,12]. 

Kombucha fermentation requires around seven 

days statically under aerobic conditions at 

temperatures between 25 °C and 30 °C [13]. The initial 

phase of this fermentation process is reflected in high 

sucrose levels but low acidity. On the other hand, 

further steps include a gradual decrease in 

oxygenation. This occurrence results from forming a 

cellulose layer on top of the cultivation liquid, the 

oxygen consummation, and the accumulation of 

organic acids (acetic acid, gluconic acid, etc.) 

produced by tea fungus [14—15]. At the end of 

kombucha fermentation, the system can be described 

with a well-structured cellulose layer on the top, high 

concentration of yeasts and AAB (106—108 CFU/mL), 

lower substrate concentration, and high acidity [16]. 

Creating a more controllable fermentation process and 

optimizing the operating factors require examining the 

diversity and role of each microbial group, the 

dynamics of the microbial population, and all changes 

in the system reflected through the quality of the final 

product [3]. Microbial interactions during kombucha 

fermentation strongly impact substrate consumption 

and metabolic production (e.g., ethanol produced by 

yeasts can harm the growth of some microorganisms, 

organic acids production by AAB can induce acidic 

stress of other microbiota, the pH changes from 5-7.0 

to 2-4.0 after 7 days of fermentation, etc.) [15]. 

Although the type of tea is recognized as one of 

the essential factors in kombucha production, the most 

significant impact of the fermentation process is 

operating factors. The key factor of kombucha 

fermentation is assumed to be the oxygen amount in 

the culture medium, which is necessary for AAB 

proliferation. The dimensions of the fermentation 

vessel and the specific interfacial area can influence the 

oxygen level during fermentation which is a crucial 

operating parameter [17]. Furthermore, under static 

conditions, the amount of dissolved oxygen is inevitably 

the function of the size of the interfacial surface [18]. In 

the condition of a low oxygen concentration and the acid 

production by AAB, the pH value is above 4, which can 

induce lactic acid bacteria (LAB) growth and lactic acid 

production [3]. De Filippis et al. [18] reported that 

incubation time and temperature also influence the 

product's microbial activity and chemical 

characteristics.  

The effect of many operating factors and 

conditions and the interaction between them on the 

efficiency of the fermentation process can be analyzed 

by different mathematical tools. For example, response 

surface methodology (RSM) and other experimental 

designs (e.g., Box-Behnken, Plackett-Burman, Taguchi 

design, etc.) can be effective tools for optimizing the 

targeted process and explaining the individual and 

combined effect of the independent variables [19-20]. 

Using adequate mathematic analysis can determine 

and simultaneously explain the optimization of 

kombucha fermentation and set up further steps during 

the scale-up of kombucha production [21]. Only a few 

scientific studies and craft production deal with scale-up 

and more controllable fermentation processes during 

kombucha production. It is necessary to optimize 

operating factors and create the next generation of 

kombucha as part of the functional food field. In this 

way, kombucha fermentation will be more predictable 

and economical for industrial production [3]. 

The objective of this study was to investigate the 

possibility of predicting pH value and titratable acidity 

based on the specific surface area of the vessel (SSAV), 

the inoculum size (Inn), and the initial concentration of 

tea (ICT) using artificial neural network modeling. In 

addition, Time was an additional output, as one of the 

variables defined after achieving optimal pH value and 

titratable acidity and used for further mathematical 

modeling. 

 
MATERIAL AND METHODS 

 
Tea fungus 

Fermentation was performed using the local 

household tea fungus culture. Previous studies showed 

that it contained at least five yeast strains 

(Saccharomycodes ludwigii, S. cerevisiae, S. bisporus, 

Torulopsis spp., and Zygosaccharomyces spp.) and two 

bacteria of the Acetobacter genera [22—23]. 

 
Fermentation conditions 

The cultivation medium uses sweetened black tea 
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(70 g sucrose/L of tap water). Briefly, 0.15%, 0.3%, 

or 0.45% (w/v) of black tea ("Fructus," Bačka 

Palanka, Republic of Serbia) was added to boiled tap 

water and removed after 15 min by filtration. After 

reaching room temperature, the tea base was 

inoculated with 2.5%, 5%, or 10% (v/v) of the 

fermentation broth from the previous fermentation 

(five-day fermentation until optimal acid content of 

4— 4.5 g/L is reached) obtained at 28 ± 1 °C without 

stirring. The cultivation medium was transferred into 

cylindrical glass vessels whose geometric 

characteristics are shown in Table 1. To get different 

values of the specific surface area of the vessel, the 

volume of the cultivation medium in the vessels was 

varied. The specific surface area of the vessel 

presents the ratio of the free area (cross-sectional 

area of the vessel) and the volume of the substrate. 

The sterile gauze was placed on a glass vessel to 

prevent contamination during cultivation. The 

medium was incubated at 28 ± 1 °C without stirring. 

All experiments were performed in three independent 

replicates, and all obtained values are represented 

as the arithmetic values of individual measurements. 

Table 1. Characteristics of cylindrical glass vessels and 
specific surface area of the vessel (SSAV) 

Vessel characteristics The volume 

of cultivation 

medium 

SSAV* 

Volume Diameter 

(L) (cm) (L) (cm-1) 

0.72 8 0.17 0.30 

0.72 8 0.33 0.15 

5 16 3.30 0.06 

* The ratio of the free area (cross-sectional area of the vessel) and the 

volume of the substrate. 

 
Sampling 

A sampling of the fermentation medium was 

performed every day until the selected output (pH 

value and TA) did not show the optimal acid content 

until the end of fermentation. Sampling was done only 

once in the specified time to avoid the potential 

contamination during a further fermentation process. 

During the fermentation process, pH value and TA 

were determined. 

 
Methods of Analysis 

The pH values were measured using an 

electronic pH meter (HI 99181, HANNA Instruments, 

Woonsocket, USA) calibrated at pH 4.0 and 7.0. The 

titratable acidity (TA) was determined according to 

Jacobson [24]. After removing CO2 (during 30-second 

treatment in an ultrasound bath, B-220, Branson 

Company, Shelton, USA) from the fermentation broth, 

an aliquot was taken and titrated with 0.1M NaOH. 

The TA was expressed in grams of acetic acid per liter 

of the sample. 

 
Experimental design 

The pH value and titratable acidity were 

predicted based on three operation factors: the 

SSAV, the Inn, and the ICT. These three operating 

factors (X1 – SSAV, X2 – Inn, and X3 – ICT) were 

independent factors in the selected Box–Behnken 

experimental design. The pH value and titratable 

acidity were chosen as the dependent factors. The 

experimental design is given as % in Table 2 with 

three levels for each independent factor, coded as –1, 

0, and +1, corresponding to the lower, middle, and 

higher levels, respectively. The response surface 

method was used to evaluate the influence of the 

MATH operating factors on the kombucha 

fermentation process. The impact of the examined 

factors and their interaction was studied using 

response surface plots to present the influence of 

fermentation time and initial tea concentration on pH 

value and TA of kombucha during fermentation. Time 

was an additional output as one of the variables 

defined after achieving optimal pH value and 

titratable acidity and used for further mathematical 

modeling. 

 
ANN modeling 

A multi-layer perceptron model (MLP), which 

consisted of three layers (input, hidden, and output), 

was used for modeling an artificial neural network 

model (ANN) for the prediction of pH value and TA 

based on three input variables: SSAV, Inn, ICT, as 

well as on one output, i.e., Time which values defined 

achieving optimal acidity for kombucha production. In 

the known literature, the ANN model was proven as 

quite capable of approximating nonlinear functions 

[25—27]. Before the calculation, both input and output 

data were normalized to improve the behavior of the 

ANN. During this iterative process, input data were 

repeatedly presented to the network [28—29]. 

Broyden -Fletcher-Goldfarb-Shanno (BFGS) 

algorithm was used as an iterative method for solving 

unconstrained nonlinear optimization during the ANN 

modeling. 

The experimental database for ANN was 

randomly divided into training, cross-validation, and 

testing data (with 70%, 15%, and 15% of 

experimental data, respectively). The training data 

set was used for the learning cycle of the ANN and 

the evaluation of the optimal number of neurons in the 

hidden layer and the weight coefficient of each 

neuron in the network. A series of different topologies  
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were used, in which the number of hidden neurons 

varied from 5 to 20, and the training process of the 

network was run 100,000 times with random initial 

values of weights and biases. The optimization process 

was performed based on validation error minimization. 

It was assumed that successful training was achieved 

when learning and cross-validation curves approached 

zero. 

Coefficients associated with the hidden layer 

(weights and biases) were grouped in matrices W1 and 

B1. Similarly, coefficients related to the output layer 

were grouped in matrices W2 and B2. It is possible to 

represent the neural network by using matrix notation 

(Y is the matrix of the output variables, f1 and f2 are 

transfer functions in the hidden and output layers, 

respectively, and X is the matrix of input variables [30]: 

1 2 2 1 1 2( ( ) )Y f W f W X B B=   + +    (1) 

Weight coefficients (elements of matrices W1 and 

W2) were determined during the ANN learning cycle, 

which updated them using optimization procedures to 

minimize the error between the network and 

experimental outputs [28, 30—32], according to the sum 

of squares (SOS) and BFGS algorithm, used to speed 

up and stabilize convergence [33]. Finally, the 

coefficients of determination were used as factors to 

check the performance of the obtained ANN model. 

Statistical analyses were done using Statistica software 

v. 13.2 (Dell, Round Rock, Texas, USA). 

 
Sensitivity analysis 

Yoon’s interpretation method was applied based 

on the connection weights partitioning of the developed 

ANN to determine the relative influence (RI) of the 

SSAV, Inn, ICT, and Time on pH value and titratable 

acidity. The following equation developed by Yoon et 

al. [34] was used: 

( )
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where RIij is the relative importance of the i-th 

input variable on the j-th output, wik is the weight 

between the i-th input and the k-th hidden neuron, and 

wkj is the weight between the k-th hidden neuron and 

the j-th output. 

 
The accuracy of the model 

The numerical verification of the developed model 

was tested using the coefficient of determination (r2), 

reduced chi-square (χ2), mean bias error (MBE), root 

mean square error (RMSE) and mean percentage error 

(MPE). These commonly used parameters can be 

calculated as follows [35]: 
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where xexp,i stands for the experimental values and xpre,i 

are the predicted values calculated by the model, N and 

n are the number of observations and constants, 

respectively. 

 
RESULTS AND DISCUSSION 

 

Kombucha fermentation was studied to determine 

the influence of the SSAV, the Inn, and ICT on the 

efficiency of kombucha fermentation through pH value 

and titratable acidity (TA). Additionally, an important 

factor was also final Time, which was observed after 

achieving optimal acidity in the system. Namely, to 

obtain a pleasantly sour beverage, fermentation should 

be terminated when TA of fermentation broth reaches 

4-4.5 g/L, which is confirmed by kombucha consumers 

[17]. The reason for the selection of incubation time is 

that an optimum fermentation time is required for the 

production of kombucha with pleasant flavor and taste, 

as well as further scaling-up and potential 

industrialization of kombucha production. Furthermore, 

longer fermentation produces high levels of acids (like 

mild vinegar) that may pose potential risks when 

consumed [36]. For this purpose, Box Behnken design 

was performed for all mentioned operating factors of 

the fermentation process. Table 2 summarizes the used 

experimental design and the obtained results. 

Before further mathematical analysis, it can be 

observed based on the obtained results that the specific 

interfacial surface area of the vessel has a particular 

influence on acetic acid synthesis during kombucha 

fermentation. Furthermore, in the vessels with a 

specific interfacial surface area is 0.3 cm-1, an optimal 

acidity of kombucha was achieved practically twice as 

faster compared to vessels with a specific area of 0.06 

cm-1 under the same other experimental factors (by 

comparing experiments 5 and 6, as well as 7 and 8 in 

Table 2). Cvetković et al. [37] previously established a 

mathematical model to ensure the scaling-up process 

of kombucha fermentation, which can be quite complex 

and should consider the specific interfacial area as the 

main variable. Similar conclusions are reported by 

Junker [38] and Villarreal-Soto et al. [39], which 

demonstrated the same behavior during the variability  
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of this operating parameter. Furthermore, without 

agitation and aeration, the kombucha fermentation 

process in cylinder vessels strongly depends on the 

specific surface area, which is indicative of this study's 

obtained results. Therefore, it can be concluded that an 

effective process can ensure vessels with a specific 

surface area greater than 0.15 cm-1 provide a sufficient 

oxygen supply by diffusion through the medium surface 

area. 

The influence of the inoculum size on the 

fermentation process is primarily observed in the 

slightly increased acidity of the medium after 

inoculation. A higher concentration of total acids was 

recorded in the cultivation medium with a larger 

inoculum size by studying fermentation processes 

through the Box-Behnken experimental design. As a 

result, the time required to obtain the beverage of 

optimal acidity was shorter. However, slightly higher 

acidity in the fermentation broth has a beneficial effect 

on the physiological activity of yeasts and AAB [3]. 

Acid’s presence stimulates yeasts to produce ethanol, 

which is then used by acetic acid bacteria to grow and 

produce more acetic acid [40]. Lončar et al. [41] 

reported that fermentation rate was slightly affected by 

inoculums concentrations ranging between 10 and 15% 

(v/v). Therefore, although increasing inoculum size can 

positively affect the productivity of kombucha 

fermentation, it can be concluded that there is also a 

negative impact on the economy of kombucha 

production at the same time. According to the obtained 

results, it can be summarized that the initial tea 

concentration had a specific influence since the 

fermentation will be finalized using any of the tested 

concentrations of herbal. On the other hand, the 

fermentation will be finalized at different points in time 

using a different combination of tested inputs. Briefly, 

the fermentation time can be shortened on 4 incubation 

days by applying optimized values of SSAV, Inn, and 

ICT. 

 
ANN modeling 

Based on experimental results obtained from the 

experimental design, the final fermentation time to 

reach optimal acidity was included as one of the data 

for further statistical analysis. This step provided 

another aspect of examination of operating factors of 

kombucha fermentation. There have been no published 

results on the application of ANNs for predictive 

modeling of kombucha production based on the pH and 

TA values. Despite the lack of results in this field, ANN 

models are recognized in bioprocesses as a good 

modeling tool. They offer an empirical explanation of 

the problems from experimental data and can conduct 

complex systems with nonlinearities and interactions 

between decision variables [20]. The ANN model is 

developed to accurately predict pH and TA values 

based on the selected factors. The obtained number of 

hidden neurons in the network was 8 (network MLP 4-

8-2). In this way, very high values of r2 (during the 

training cycle, the r2-values for the output variables 

were: above 0.99) were gained, shown in Table 3. The 

acquired optimal neural network model showed a good 

generalization capability for the tested experimental 

data. However, the obtained ANN model for the 

prediction of output variables was complex (58 weights-

biases) because of the high nonlinearity of the 

observed system [42]. 

The three-dimensional surface plots were created 

(Figure 1) to present the influence of fermentation time 

and initial tea concentration on pH value and TA of 

kombucha fermentation. It can be observed that 

minimal initial tea concentration (0.15%) provided 

sufficient nitrogen compounds and mineral elements 

necessary for kombucha fermentation under stationary 

fermentation conditions. However, further tests should 

confirm whether this concentration of tea is the final 

minimal amount that ensures the efficiency of 

kombucha fermentation. As the time and temperature 

of fermentation are used in kombucha production, the 

tea and sugar proportions can vary according to each 

region or consumer preferences (2017). 

According to Jayabalan et al. [4], the standard 

procedure for kombucha production implies the use of 

50 g sucrose and 5 g tea leaves with 1 L boiled tap 

water. The tea is removed by filtration after 5 min, and 

after cooling to room temperature, the medium is 

inoculated with 24 g of the tea fungus culture. Kallel et 

al. [42] used even 12 g/L of green or black tea with 

5 min of infusion to prepare the kombucha cultivation 

medium. After 15 days of fermentation, the TA for green 

tea kombucha was 5.4 g/L and 8.0 g/L for black tea 

kombucha. Generally, the same differences in TA, 

process duration, and cell counts in kombucha 

beverages obtained in different studies are expected 

because of inoculums (tea fungus culture) from other 

locations. The variations could be due to geographic, 

climatic, and cultural conditions and local species of 

wild yeasts and bacteria or, possibly, cross-

contamination between cultures [8]. Based on the 

unattainable adequate TA and pH values, it can also be 

concluded that, despite the high contents of C and N 

sources, the fermentation process with a high tea 

concentration can be slower and, therefore, 

economically less acceptable. 

The fermentation time in kombucha production is 

a variable parameter demonstrated in this study (Table 

2, Figure 1). Based on the obtained results (Figure 1a), 

it is evident that the adequate pH value was achieved  
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Table 3. Artificial neural network model summary (performance and errors) 

Network 

name 

Performance* Error Training 

algorithm 

Error 

function 

Hidden 

activation 

Output 

activation 
Train. Test. Valid. Train. Test. Valid. 

MLP 4-8-2 0.992 0.902 0.990 0.053 0.723 0.052 BFGS 56 SOS Tanh Logistic 

* Performance term represents the coefficients of determination, while error terms indicate a lack of data for the ANN model. 

 

 

Figure 1. The influence of time (days) and initial concentration of tea on the pH value and titratable acidity (g/L) (3D surfaces - predicted 

values, black dots - experimental values). 

 

after 4 days of fermentation and at any value of initial 

tea concentration. According to the results presented in 

the three-dimensional plot (Figure 1b), it can be 

concluded that the TA value is equally achieved at 

medium values of fermentation time and any values of 

tea concentration. The obtained result for pH and TA 

correlated with the results of Cvetković et al. [37], which 

suggested that after three days of incubation, the pH 

value of 3.21 and TA value of 4.32 g/L can be achieved. 

The accuracy of the ANN model could be visually 

assessed by the dispersion of points from the diagonal 

line in the graphics presented in Figure 2. For the ANN 

model, the predicted values were very close to the 

measured values in most cases, in terms of r2 values. 

Therefore, SOS obtained with the ANN model were of 

the same order of magnitude as experimental errors for 

the pH value and TA. Table 4 presents the elements of 

matrix W1 and vector B1 (shown in the bias column) and 

the elements of matrix W2 and vector B2 (bias) for the 

hidden layer used for Eq. (2). The goodness of fit 

between experimental measurements and model-

calculated outputs, represented as ANN performance 

(sum of r2 between measured and calculated output 

variables), during training, testing, and validation steps, 

are shown in Table 5. 

 

 

Figure 2. Comparison between experimental and calculated pH values and titratable acidity (g/L). 
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Table 4. Elements of matrix W1 and vector B1 (presented in the bias column) 

Inputs 1 2 3 4 5 6 7 8  

SSAV -0.912 2.235 -0.674 0.279 1.357 -5.377 -0.295 0.545  

Inn -0.538 -3.939 -1.484 6.261 -3.636 1.385 1.628 0.344  

ICT 1.231 -0.655 -0.325 -1.273 0.818 2.114 -1.333 0.690  

Time 0.242 -3.318 0.025 4.048 -2.839 -1.876 0.176 -2.758  

Bias -0.297 0.046 -0.272 0.786 3.328 3.201 -1.161 0.457  

Outputs 1 2 3 4 5 6 7 8 Bias 

pH value 0.381 1.503 -1.098 -3.438 2.105 1.092 3.240 0.808 2.962 

Titratable acidity 0.808 -3.533 0.334 1.703 -2.594 -2.677 -3.506 -1.880 -5.347 

 

Table 5. The "goodness of fit" tests and residual analysis for the developed ANN model 

Output variable χ 2 RMSE MBE MPE SSE AARD r2 Skew Kurt Mean StDev Var 

pH value 0.02 0.15 -0.004 2.73 1.96 13.05 0.97 0.06 1.08 -0.004 0.15 0.02 

Titratable acidity 0.29 0.53 0.007 38.75 26.66 25.51 0.96 -1.91 23.88 0.007 0.54 0.29 

 

A high r2 is indicative that the variation was 

accounted for and that the data fitted the proposed 

model satisfactorily [43]. The residual analysis of the 

developed model is presented in Table 5. The ANN 

model reasonably predicted experimental variables for 

a broad range of process variables. For the ANN model, 

the predicted values were very close to the measured 

values in most cases, in terms of r2 values. SOS values 

obtained with the ANN model were of the same order of 

magnitude as experimental errors for output variables 

reported in the literature [28, 32]. The ANN model had 

an insignificant lack of fit tests, which means the model 

satisfactorily predicted output variables. A high r2 

indicates that the variation was accounted for and that 

the data adequately fitted the proposed model [44—45]. 

 
Global sensitivity analysis- Yoon’s interpretation 
method 

This section studied the influence of SSAV, Inn, 

ICT, and Time on the relative importance (RI) of pH 

value and TA. According to Figure 3, Time and Inn were 

the most influential factors with the relative importance 

of -47.26% and -44.08%, respectively, for the pH value 

calculation. In comparison, the relative influence of the 

mentioned factors was 55.32% and 35.59%. 

 

 

Figure 3. The relative importance of operating parameters on pH value and titratable acidity determined using the Yoon interpretation 

method. 
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CONCLUSION 

 

An investigation of the kombucha fermentation 

optimization was performed to determine the possibility 

of predicting the pH value and TA based on three input 

variables: SSAV, Inn, ICT, as well as one output, i.e., 

Time which was defined as achieving the optimal 

acidity in the system, using the ANN model. The ANN 

model was shown to be adequate for predicting output 

variables (the r2 values during the training cycle for 

these variables were: 0.990 and 0.994, respectively). In 

summary, Box Benhken's experimental design was 

applied, and predictive ANN modeling was developed 

to establish the optimum kombucha fermentation 

process to achieve the effective fermentation of the 

kombucha beverage. Effective kombucha fermentation 

can be performed using vessels with a specific surface 

area greater than 0.15 cm-1, which provides sufficient 

oxygen supply by diffusion through the medium surface 

area. The final product can be obtained after 4 days of 

fermentation and at any tested value of initial tea 

concentration. Furthermore, the scale-up process from 

a laboratory scale to a commercial product is a 

challenge because of the difficulty of optimizing the 

factors which may influence the scaling process during 

fermentation. Therefore, more scientific research in the 

optimization of the operating factors should be done to 

establish effective fermentation and production of a 

functional beverage. 

In the following steps of this investigation, other 

essential factors for monitoring kombucha fermentation 

have to be tested in the same way as reported in this 

study. For example, the selection of additional factors 

can be directed to a concentration of residual sugar and 

alcohol and the evolution of carbon dioxide. In addition, 

testing as many characteristics of the fermented 

product and determining their correlation with operation 

factors leads to obtaining functional beverages that 

consumers will quickly accept. Furthermore, 

understanding the type and number of microbiota 

present in the tea fungus culture can explain specific 

influence on kombucha fermentation and tested factors 

in this research. 
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NAUČNI RAD 

VEŠTAČKA NEURONSKA MREŽA KAO ALAT ZA 
POBOLJŠANJE KOMBUHA FERMENTACIJE 

 
Kombuha je fermentisani napitak na bazi čaja, koji postaje sve rasprostranjeniji uglavnom 

na tržištu funkcionalne hrane, zbog koristi za poboljšavaju zdravlja. Kao deo 

svakodnevne ishrane odraslih i dece, kombuha se izdvojila kao bezalkoholno piće koje 

sadrži smešu korisnih sastojaka: organskih kiselina, minerala, vitamina, proteina, 

polifenola i dr. U radu je ispitan uticaj specifične površine suda, veličine inokuluma i 

početne koncentracije čaja kao radnih parametara, i trajanja fermentacije kao izlazne 

promenljive na efikasnost kombuha fermentacije. Fokus ovog rada je optimizacija i 

standardizacija uslova kombuha fermentacije korišćenjem Box-Behnken 

eksperimentalnog dizajna i primenom modela predviđanja veštačke neuronske mreže 

(ANN) za proces fermentacije. Za unapređenje proračuna korišćen je iterativni algoritam 

Broiden-Fletcher-Goldfarb-Shanno. Dobijeni ANN modeli za pH vrednost i titrabilnu 

kiselost pokazali su dobre mogućnosti predviđanja (vrednosti r2 tokom ciklusa treninga 

za izlazne varijable bile su 0,990 i 0,994, respektivno). Prediktivno ANN modelovanje 

pokazalo se efikasnim i pouzdanim u uspostavljanju optimalnog procesa kombuha 

fermentacije koristeći odabrane radne parametre. 

Ključne reči: eksperimentalni dizajn, poboljšanje fermentacije, proizvodnja 
kombuhe, matematičko modelovanje. 
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