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Abstract 

Entrained flow gasification is a well-established technology, however, the main obstacle in 

process design is complex gasification mechanism, since numerous phenomena at extreme 

process conditions take place simultaneously. This study is focused on integrated 

thermodynamic and artificial neural network approach (ANN) for entrained flow gasification 

kinetics investigation. Data on 102 feedstock materials composition was used in AspenPlus 

gasification simulation, where sensitivity analysis was performed for different equivalence 

ratio (0.1-0.7) and gasification temperature (1200-1500°C) values. For analyzed materials, 

optimal equivalence ratio range exist (usually 0.3-0.4), maximizing gasification efficiency. 

Obtained results were used in ANN development for each output variable (syngas 

composition, efficiency, heating value and carbon conversion). Matlab algorithm was used 

for determination of optimal number of neurons (1-20 range) in each ANN. High R2 values 

(>0.99) for all models suggested good agreement between simulated and predicted values. 

Genetic algorithm-based optimization studies for maximization of hydrogen content and cold 

gas efficiency result in mean ER value of 0.35 and 0.41, respectively, at temperature of 

1200°C. Yoon interpretation method was used for quantifying relative impacts of each input 

variable on syngas content and gasification efficiency. Proposed approach represents a 

powerful tool which can facilitate investigation of entrained flow gasification and process 

design. 

Keywords: syngas, optimization, simulation, machine learning. 

Highlights 

− Sensitivity analysis of gasification kinetics of different feedstocks was performed in 

Aspen Plus 

− Process parameters and feedstock impact on efficiency and syngas composition is 

analyzed 

− Obtained results are used for ANN development and modeling with high accuracy 

− Process parameters optimization studies regarding syngas content are performed 
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Introduction 

Global energy production, despite an increase in renewable energy sources consumption, is 

still dominated by fossil fuels. Approximately one-third of global electricity production in 

2022 came from renewable energy sources, while their share in total energy consumption is 

even lower, approaching 20% [1,2]. Taking into account non-renewable nature of fossil fuels 

and intensive greenhouse gas and pollutant emissions, energy industry is expected to shift 

towards cleaner energy sources (solar, wind, hydro, geothermal, biomass, etc.) [3], which is 

recognized and controlled by global policies [4,5]. Thus, serious effort is made in order to 

develop new and improve existing energy conversion technologies.  

Thermochemical conversion technologies consist of the conversion of carbonaceous 

feedstocks into liquid, solid or gaseous products for further production of electricity, heat, 

chemicals or fuels. Among the conventional thermochemical conversion technologies 

(combustion, gasification and pyrolysis) [6], gasification offers benefits in terms of high 

conversion efficiency [7], achievable carbon capture and cleanup of produced gas (syngas) 

[8], as well as polygenerative potential due to specific syngas composition [9].   The process 

consists of partial oxidation of carbon in the fuel in the presence of a gasifying agent, such as 

oxygen, air, air-oxygen mixture, steam, steam-oxygen mixture or carbon-dioxide. Produced 

syngas consists mainly of carbon-monoxide, hydrogen, methane, carbon dioxide and water. 

Solid residue consists of ash and unconverted organic fraction of the fuel [10,11]. Overall 

reacting system is endothermic, where necessary energy can be provided by partial oxidation 

(auto-thermal gasification) or by external supply of energy (allo-thermal gasification). 

Considering the auto-thermal system, gasification can be seen as a sequence of three stages: 

drying, decomposition (devolatilization) and gasification. Overall process output depends on 

several factors, including operating conditions (temperature and pressure), amount and type 

of gasifying agent, feedstock composition and gasification technology [11,12].                  

Several gasification technologies have been developed in recent years, which differ in 

operating conditions, feedstock material state, capacity, efficiency and scale-up potential. 

Within the currently available gasification technologies, such as fixed bed and fluidized bed, 

entrained flow gasifiers constitute an interesting option owing to their commercial large-scale 

availability (technological readiness index of around 7-8), lower emissions and their high 

efficiency for the production of syngas [13,14].  Complex construction and operation, 

problems with construction materials at high temperatures, as well as fuel specificity in terms 
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of particle size, are compensated by high conversion efficiency, high capacity, good gas-solid 

contact and mixing, moderate heating value syngas and great scale-up potential. Typical 

entrained flow gasification (EFG) temperature is above ash melting point, typically in the 

range of 1200-1500°C, while gasification pressure is usually above 25 bar [13,15,16].            

In order to develop and design gasification processes, detailed investigation of process 

kinetics must be done, which helps determine impact of operating conditions and feedstock 

material composition on outlet parameters, i.e., carbon conversion, syngas yield and syngas 

composition. Thus, several different gasification models have been developed, which can be 

divided into kinetic rate models, thermodynamic equilibrium models and neural network 

models [15]. Kinetic models provide essential information on kinetic mechanisms to describe 

the conversion during biomass gasification. Several studies that include kinetic models have 

been made, taking into account gasification reactions, heat and mass transfer and fluid 

dynamics in EFG [17–24]. Thermodynamic equilibrium models are independent of gasifier 

design and may be more suitable for process studies on the influence of the most important 

process parameters. Additionally, this model requires less details of the system in hand. Thus, 

stoichiometric and non-stoichiometric equilibrium models have extensively been used for 

gasification purposes [25–29], especially in the domain of EFG, since the system approaches 

thermodynamic equilibrium at higher temperatures [15,30]. Furthermore, this approach is 

often implemented in AspenPlus simulation software, which has become a standard 

procedure for simulation and investigation of gasification process. Software enables 

equilibrium calculations through Gibbs free energy minimization [30]. Artificial neural 

networks (ANN) have recently been successfully used in various areas of chemical 

engineering research. The concept of ANN allows for black-box modeling of large amount of 

data, which can be useful in phenomenologically complex processes, such as EFG and 

gasification in general. Therefore, several types of researches using ANN have been 

conducted in order to evaluate performance of various gasification systems [31], optimize a 

given gasification process for hydrogen production [32], model biomass gasification in 

fluidized bed gasifiers [33] and fixed bed downdraft gasifiers [34], predict biomass 

gasification process parameters [35], and develop a comprehensive gasification model, taking 

into account wide range of inlet and outlet parameters [36]. Also, some studies have 

developed an integrated thermodynamic equilibrium and ANN approach, which uses 

equilibrium calculations results as ANN input data, while single output variable is 

considered, mainly syngas heating value [37] and net energy output [38].  
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By using a simulation software like AspenPlus, thermodynamic equilibrium approach can be 

applied for gasification of different feedstock materials at different operating conditions. 

Thus, obtained data on syngas composition can be used for development of ANN, which will 

take into account feedstock composition, gasifying agent type and flowrate, as well as 

operating conditions and provide outputs in form of syngas composition, gasification 

efficiency, etc. This approach can be beneficial on multiple levels, since only obtained ANN 

models are necessary for evaluation of gasification performance, thus providing a tool for 

engineers for preliminary assessment of potential plant efficiency, gasification operation 

feasibility and necessary operating conditions. Also, gasification kinetics for a given material 

can be assessed without the use of process simulator, while comparative analysis of behavior 

of different feedstock materials can be performed.  

It is worth mentioning that there is ongoing research and development in the field of 

gasification, and new and innovative technologies are emerging that could potentially surpass 

EFG in terms of efficiency and cost-effectiveness [39–41]. Nonetheless, EFG remains one of 

the most promising and widely used gasification technologies at present. Therefore, the goal 

of this research is to investigate in detail the kinetics of EFG process via integrated ANN and 

thermodynamic equilibrium approach. In order to obtain representative data on EFG, 

numerous different feedstock materials have been investigated, which composition is taken 

from the literature and used as an input in AspenPlus gasification simulation. Typical oxyfuel 

gasification process flowsheet configuration was used, while sensitivity analysis was 

performed for all samples, with equivalence ratio and gasification temperature as parameters 

to be varied. Obtained results are used as input data for ANN development using a Matlab 

algorithm for network topology optimization. Obtained models for prediction of output 

variables (syngas composition, cold gas efficiency, carbon conversion and syngas LHV) are 

further used for developing the objective function for optimization via genetic algorithm 

method. Objective function uses equivalence ratio and temperature as decision variables and 

parameter of interest as target variable, thus allowing for quick determination of optimal 

process parameters for a given feedstock material.  

Materials and methods 

Feedstock material data 

In order to develop a comprehensive gasification model, wide range of input parameters is 

necessary. Since gasification is suitable for relatively broad spectrum of raw materials, data 
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on various feedstock material types composition is obtained from the literature. The general 

idea is to obtain data on proximate and ultimate analysis for materials of different origin and 

heating value, providing necessary range of individual components composition. Data on 

proximate and ultimate analysis is obtained for 40 municipal solid waste (MSW) and refuse 

derived fuel (RDF) samples, 39 biomass samples, 10 coal samples, and 13 biomass briquettes 

samples. Complete input data is given in Supplementary material, Table S1. Since further 

calculations require the data on materials lower heating value (LHV), for instances where 

only higher heating value (HHV) is given, necessary conversion is made according to Eq. 1 

[42]: 

(9 ) 2.44  
MJ

LHV HHV H Moisture
kg

 
= −  +   

 
   (1) 

where H and Moisture stand for hydrogen and moisture content, respectively.  

Process simulation and sensitivity analysis 

Gasification process simulation is performed in AspenPlus software. Raw material 

composition data is used in definition of nonconventional components, with HCOALGEN 

and DCOALIGT models being used for enthalpy and density calculations. Peng-Robinson 

equation of state was used as a thermodynamic model. Defined components consist of 

nonconventional components (raw material and ash), decomposition products (C, H2, N2, 

H2O, S, Cl2, O2) and possible syngas components (CH4, CO, CO2, NO, NH3, HCl, H2S, 

C2H6). Typical gasification process flowsheet (see Figure 1) is developed, where feedstock 

material (FEEDSTOCK) first enters the decomposition (DECOMP - Ryield) reactor, where 

drying and devolatilization processes take place at 500 °C and gasification pressure of 25 bar. 

Then, the mixture enters the gasification reactor (GASIFIER - RGibbs), along with pure 

oxygen (O2-GASIF), which enters the reactor at 200°C and 25 bar. In the gasifier, restricted 

chemical equilibrium calculations take place at the selected gasification temperature, while 

the heat required for decomposition (Q) is provided from this reactor. Obtained products are 

sent to a separator block (SEPARATOR), where unconverted carbon and ash are removed 

(SLAG), thus simulating the formation of slag in the gasifier.  

Figure 1.  
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For determination of necessary oxygen flow rate for each simulation, equivalence ratio (ER) 

was used, while all calculations were performed in a Calculator block. Equivalence ratio for 

oxyfuel gasification is defined as: 

                                      
( / )

( / )st

O F
ER

O F
=                 (2) 

Where O/F stands for actual ratio of oxygen to fuel, while (𝑂/𝐹)𝑠𝑡 stands for stoichiometric 

ratio. Sensitivity analysis was performed for every raw material, with ER and gasification 

temperature being the parameters to be varied. Temperature was varied in the range of 1200 

°C to 1500 °C, with 15 °C increments, while ER was varied in the range of 0.1 to 0.7, with 

0.03 increments. Defined flowsheet configuration is set for autothermal gasification regime; 

if the gasification reactor provides insufficient heat for decomposition (for example, when ER 

is too low, or when the material has a low heating value), error is reported, and these results 

were not taken into consideration. Simulation results include content of main syngas 

components (CO, H2, CO2, CH4 and H2O), while obtained data is used for calculation of 

syngas LHV, carbon conversion and cold gas efficiency (CGE). Carbon conversion and CGE 

are calculated from following equations: 

                                      
, ,

,

100(%)
c in c out

c in

m m
CONV

m

−
=            (3) 

                                      100(%)
syngas syngas

f f

m LHV
CGE

m LHV


= 


       (4) 

where mc,in and mc,out stand for carbon flow rate at gasifier inlet and outlet, msyngas and mf 

stand for syngas and feedstock mass flowrate, and LHVsyngas and LHVf stand for syngas and 

feedstock LHV, respectively.  

Artificial neural network modeling and optimization 

Sensitivity analysis results are used as input data for development of ANN for prediction of 

output parameters. MatLab’s Neural Network Toolbox was used for design of neural network 

structure. Standard structure with one hidden layer was used, with linear transfer function at 

the output layer and tangent sigmoid function at hidden layer. An algorithm was developed 

for determination of most suitable number of neurons in a hidden layer. The number of 

hidden neurons was varied from 1 to 20, and the training process of each network was run 10 
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times with random initial values of weights and biases. Best topology was determined 

according to coefficient of determination (R2), Mean squared error (MSE) and mean absolute 

percentage error (MAPE) values.   Bayesian regularization backpropagation algorithm was 

used for network training, where 60% of data was used as training data, 20% as validation 

data and 20% as test data. Each network consists of multiple inputs (ultimate analysis of 

feedstock material, moisture content, ER and temperature) and singular output (syngas 

content of a selected component (CH4, CO2, CO, H2, H2O), syngas LHV, CGE or carbon 

conversion). Hence, 8 independent ANNs were developed. 

Obtained functions are later used for process optimization for a given condition using a 

genetic algorithm function. As a result of optimization procedure for a given feedstock 

material composition, the algorithm returns values for ER and gasification temperature. 

Therefore, the algorithm can be used for various problems, for example, in maximization or 

minimization of specific component content in syngas, in adjusting of components ratio in 

syngas, in maximization of CGE, syngas heating value or carbon conversion.  

Results and discussion 

Characteristics of investigated feedstock materials 

As stated previously, materials of different origin were used in this study, in order to cover a 

wide range of elemental components compositions. It should be mentioned that some of the 

materials were completely unsuitable for gasification process, since the simulation reported 

errors for every combination of ER and temperature in sensitivity analysis. This is mainly due 

to high moisture content and low LHV value, which is typical for some MSW and biomass 

samples. General characteristics of feedstock material which were suitable for gasification 

simulation are shown in Figure 2. It should be noted that box plot for chlorine content was 

not displayed due to its low content in all materials. Also, outliers in LHV, carbon and sulfur 

content data correspond to coal samples used in this study.  

Figure 2.  

Impact of operating conditions on entrained flow gasification 

In order to analyze and discuss relative impact of main operating conditions, ER and 

temperature on oxyfuel EFG process, results of a sensitivity study on a randomly selected 

feedstock material will be displayed. Surface plots for selected output parameters, mainly 
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syngas composition and overall gasification parameters, are displayed in Figures 3 and 4. 

According to plots displayed in Figure 3, nonlinear correlation between syngas composition 

and operating conditions can be observed. Crucial observation is that there is a distinctive 

range of operating parameters values for which H2 and CO content are at maximum. 

Figure 3.  

Hydrogen content reaches maximum values in ER range of 0.33-0.4 (Figure 3a), while lower 

temperatures favor hydrogen content increase. Maximum CO content is obtained in similar 

ER range (Figure 3c), while further increase of ER value slightly decreases CO content, with 

similar conclusions about temperature influence to be made. It can be assumed that the 

dominant reactions in selected operating conditions range are partial oxidation and water-gas 

reactions. Methane content is significant at lower ER values (Figure 3b), where methanation 

and hydrogasification reactions are dominant. Methane and CO2 content decrease with 

increase of ER (Figures 3b and 3d), with sharp decrease being in line with area of maximum 

H2 / CO values.  

Figure 4.  

Overall gasification efficiency is strongly dependent on content of main syngas components, 

H2 and CO, due to their high heating values. Cold gas efficiency increases with increase in 

ER, with maximum CGE values being in the ER range of 0.33-0.4 and lower temperature 

area (Figure 4b).  Complete carbon conversion is obtained after the 0.35 ER threshold, for all 

temperatures (Figure 4c). In general, higher gasification temperatures lower the conversion 

and CGE, due to increase of necessary mixture sensible heat. It could be noted that the 

optimal operating conditions ensure complete carbon conversion with minimal consumption 

of gasifying agent. Syngas LHV follows the similar pattern, with main difference being in a 

significant decrease in high ER area (Figure 4a). However, higher ER results in higher overall 

gas yield, which explains slight decrease in CGE values (see Eq. 4 and Figure 4b). 

Gasification kinetics in general is complex, since the process takes place via series of 

elementary reactions. However, it is stated in the literature that few global reactions, 

including only key components and interproducts can be used for modeling purposes. Those 

reactions are given in Table 1 [43]. 

Table 1.  
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Simulation results indicate that high hydrogen content corresponds to low water content in 

syngas, which can be attributed to water-gas shift reaction, as well as steam gasification 

reaction, where carbon is gasified with water vapor. At the area of complete carbon 

conversion, carbon gasification and oxidation no longer take place, which also causes 

hydrogen not to form via steam gasification reaction. Boudouard reaction is one of the most 

important reactions in entire gasification mechanism, where carbon reacts with CO2 while 

forming CO. This explains decrease of CO content in the area of higher ER. At complete 

carbon conversion, system stabilizes and no significant composition changes take place. Only 

homogenous reactions take place, primarily water-gas shift, while temperature and 

approximately equilibrium composition prohibit further reaction advancement. Also, it is 

important to highlight that methane and other hydrocarbons decompose at higher 

temperatures [13], which is why the obtained methane content is low.  

3.3 Artificial neural networks 

One neural network was developed for each output variable via algorithm described in 

Section 2.3. It should be noted that after initial runs, the number of input parameters were 

decreased, since chlorine and nitrogen content in feedstock materials is very low and their 

impact on output variables should be negligible (due to small quantity and inert nature of 

their gasification products). Likewise, ash is inert in gasification process, thus, its impact is 

also neglected, resulting in 7 input parameters (carbon, hydrogen, oxygen, sulfur and 

moisture content, ER and gasification temperature) for each output parameter. ANNs 

performance and topology are shown in Table 2, while parity plots of some predicted and 

simulated values are shown in Figure 5. Remaining parity plots are given in Supplementary 

material, Figure S1. 

Table 2.  

Number of hidden neurons increases the prediction accuracy, since optimal number of 

neurons was close to 20, while coefficients of determination values were above 0.99 for all 

instances. The impact of hidden neurons’ number on coefficient of determination for each 

neural network is given in Supplementary material, Figures S2 and S3. High accuracy is also 

confirmed by low MSE and MAPE values. It should be noted that simulated values of certain 

values are close to zero for a wide range of operating parameters, thus resulting in a relatively 

high MAPE value, even though overall prediction accuracy is high. 
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Figure 5.  

To quantify the impact of input variables on syngas composition and overall gasification 

parameters, Yoon’s interpretation method was used [44]. Obtained results are displayed in 

Table 3. In can be noted that equivalence ratio has a higher general impact on syngas 

composition and overall gasification efficiency than temperature, while carbon and moisture 

content impact the syngas composition the most. Results on relative importance of ER and 

gasification temperature are in line with sensitivity analysis results displayed previously. 

Table 3.  

Since developed neural network models show good agreement between simulated and 

predicted data, they could be further used for optimization purposes. Two optimization 

problems were tested; obtaining the maximum hydrogen fraction in syngas and obtaining of 

maximum CGE for a given feedstock material. Genetic algorithm was used for optimization 

on each feedstock material, with ER and gasification temperature as output parameters. Parity 

plots on simulated (based on sensitivity analysis results) and predicted (optimization) 

hydrogen fraction and CGE are shown in Figure 6.  

Figure 6.  

Obtained optimization results are in accordance with sensitivity analysis results. It should be 

noted that ER and temperature are in this case continuous variables, contrary to sensitivity 

analysis, which could lead to slight deviation of results. Temperatures corresponding to 

optimal operating conditions are close to minimal gasification temperature of 1200°C, while 

mean ER values are 0.35 for hydrogen optimization and 0.41 for CGE optimization. 

In general, this approach contributes to better understanding of EFG process kinetics, while 

developed ANN models can be used for quick prediction of gasification output parameters 

for a given feedstock. Obtained syngas composition can be futher used to facilitate 

gasification based processes simulation, since complex three-phase calculations are bypassed. 

Also, models can be used for process optimization i.e. obtaining the optimal operating 

conditions for a specified goal.   

Conclusion 

An integrated ANN and AspenPlus gasification model was used for investigation of entrained 

flow gasification kinetics. Various feedstock materials, mainly waste, RDF, coal and biomass 
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were used in order to obtain a wide range of input material elemental compositions. For each 

feedstock material, sensitivity analysis on EFG in AspenPlus was performed, for different 

equivalence ratios and temperatures, and obtained results were used in ANN development. 

Single layer ANNs with adjustable number of neurons were developed for every output 

variable (syngas components fractions, cold gas efficiency, syngas lower heating value and 

carbon conversion), with high prediction accuracy (R2>0.99). All models consists of high 

number of hidden neurons (19-20). Also, general impact of ER and temperature, as well as 

feedstock material composition on output parameters was determined and discussed. Highest 

gasification efficiencies are obtained at lower temperatures, just above ash melting 

temperatures, and in a narrow range of ER, typically 0.35-0.45, depending on feedstock 

material composition. In this ER range, highest H2 content and moderate CO content is 

obtained, resulting in highest syngas heating value. Further increase of ER does not have a 

significant effect on syngas composition. Obtained models can be used for optimization 

problems, where two desired goals were succesfully tested; determination of optimal 

combination of ER and temperature for maximization of syngas hydrogen content and cold 

gas efficiency. For investigated materials, mean optimal parameters are temperature of 

1200°C and ER of 0.41 and 0.35 for cold gas efficiency and hydrogen content, respectively. 

This combined ANN and simulation approach allows for quick and accurate prediction of 

EFG efficiency and syngas composition, thus providing essential information for design and 

development of gasification processes.  

Acknowledgements: The authors would like to thank the Ministry of Education, Science and 

Technological Development of the Republic of Serbia, Project No. 451-03-65/2024-

03/200134. 
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Figure captions 

Figure 1 AspenPlus gasification process flowsheet 

Figure 2. Box-plot representation of feedstock materials composition and LHV taken from 

literature; db stands for dry-basis composition 

Figure 3. Dry-basis a) H2 content, b) CH4 content, c) CO content, d) CO2 content in syngas as 

a function of ER and gasification temperature 

Figure 4. Overall gasification parameters, a) syngas LHV, b) CGE, c) carbon conversion as a 

function of ER and gasification temperature 

Figure 5. Simulated and predicted data on a) H2 content, b) CO content, c) syngas LHV and 

d) CGE, according to developed artificial neural network model 

Figure 6. Predicted and simulated a) H2 content and b) CGE according to optimization 

procedure 
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Table 1. Main gasification reactions 

Stoichiometry Name 

Char combustion  

C+1/2O2→CO Partial combustion 

C+O2→CO2 Complete combustion 

Char gasification  

C+CO2→2CO Boudouard reaction 

C+H2O→CO+H2 Steam gasification 

C+2H2→CH4 H2 gasification 

Homogenous  

CO+1/2O2→CO2 CO oxidation 

H2+1/2O2→H2O H2 oxidation 

CH4+2O2→CO2+2H2O CH4 oxidation 

CO+H2O→CO2+H2 Water-gas shift 
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Table 2. Artificial neural network structure and prediction accuracy 

Each output neuron Hidden neurons R2 MAPE % MSE 

H2 19 0.9938 4.3858 4.7553·10-5 

CO 19 0.9988 13.6318 4.4521·10-5 

CH4 19 0.9987 60.3509 2.74339·10-6 

CO2 20 0.9968 16.8125 2.9776·10-5 

H2O 20 0.9984 7.0330 6.6187·10-5 

Syngas LHV 20 0.9997 0.4967 0.0035 

CGE 20 0.9989 1.3559 0.6355 

Carbon conversion 20 0.9994 0.2970 0.1951 
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Table 3. Relative impact of input parameters on output parameters in EFG process 

 ER T, °C C H O Moisture 

H2 38.0±12.5 -4.3±0.5 13.6±2.8 1.6±6.4 6.3±9.1 -17.4±4.5 

CO 38.7±7.2 -3.8±0.6 11.5±4.2 3.0±7.8 4.0±3.8 -15.3±8.5 

CH4 -49.9±6.2 4.3±0.5 -12.4±1.6 5.7±2.7 -1.6±2.5 10.1±5.6 

CO2 -21.2±6.7 3.8±1.0 -7.5±7.8 -9.7±5.0 2.1±7.2 12.0±8.6 

H2O -36.1±8.4 4.1±0.6 -16.3±4.3 -2.8±4.9 -2.0±4.4 23.3±3.1 

Syngas LHV, 

MJ/kg 
7.7±11.3 -3.6±0.9 4.5±4.4 20.0±5.0 -2.7±4.9 -14.3±6.6 

CGE, % 4.2±5.3 -0.6±0.8 9.4±5.5 -9.7±17.3 -3.9±11.8 -7.1±6.6 

Carbon 

conversion, % 
39.7±7.4 -1.7±0.6 -1.3±2.9 7.5±4.1 9.5±3.7 9.3±5.3 
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Figure 1. 
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Figure 2. 
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Figure 4. 
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Figure 5. 
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Figure 6. 

 


