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ABSTRACT 

This study aims to employ a machine learning algorithm (MLA) to predict CRDI 

engine emissions and performance using alternative feedstock. This study started with a 

diesel-SCOME- Methyl Acetate ternary mix. The engine was tested with fuel injection time 

(FIT) of 23°, 21°, and 19° bTDC with exhaust gas recirculation (EGR) levels of 10%, 15%, 

and 20% at estimated power productivity. Retard injection time and increasing EGR rates 

reduced in-cylinder peak pressure. Operating conditions with the maximum BTE were 21° 

bTDC and 10% EGR. Adjusting injection time and EGR reduced nitrogen oxide relative to 

the baseline. Smoke opacity was 1% lower at 21° bTDC and 10% exhaust gas recirculation 

than in conventional diesel operation. Retard injection time and exhaust gas recirculation 

increased HC and CO emissions. However, MLAs predict CI engine operation and discharge 

properties. The long short-term memory (LSTM) Model predicts engine output 

characteristics with a squared correlation (R2) of 0.92 to 0.961. At the same time, mean relative 

error (MRE) values ranged from 1.74 to 4.68%. These results show that the LSTM models 

provide superior predictive capabilities in this investigation, particularly when considering 

numerous variables to analyse engine responses. 
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Highlights 

➢ CRDI engine performance with a methyl acetate antioxidant/Non-edible oil/diesel 

ternary blend 

➢ Examine the impacts of fuel injection strategies (FIT and EGR) on the engine 

characteristics. 

➢ Innovation of machine learning algorithms and prediction models LR, NN, K-NN, 

SVM and LSTM. 

➢ The LSTM model yielding the highest R2 value range of 0.92 to 0.96, for each 

engine response. 
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Introduction 

Fossil fuel-based energy use in industrialized and developing nations is predicted to 

grow by 5–7% and 1–2% yearly. In response to this increasing use, researchers are 

considering alternative resources [1]. Because of their contributions to significant 

sectors, diesel engines are vital to the world market [2]. Because they are more effective at 

transforming fuel than gasoline engines, compression ignition (CI) engines are often used in 

mobility. Nevertheless, because of their harmful impacts that affect the ecology and 

individual wellness, the greater levels of pollutants are a cause for worry. Prolonged exposure 

to pollutants has been found to elevate the likelihood of developing lung cancer, consequently 

increasing the susceptibility to cardiorespiratory ailments [3].  It is feasible to use several 

types of oils to power CI engines by using numerous methods and making adjustments [4]. 

The study reported that biomass fuel for industrial use is derived from agricultural 

byproducts. Thus, environmental impacts are mitigated. The effects of varying the ratio of 

alcohols added to milk scum oil are analysed [5].  

Overview of Simmondsia Chinensis Feedstocks 

It is reported that the Simmondsia Chinensis oil (SCO) extract from the seeds of the 

Jojoba tree plant, a shrub can reach a height of between 1 and 5 m and has a long, healthy life 

span (100-200 years). This plant, which is common in the United States, has many other 

names. Its seedlings have oil and wax content ranging from 44 to 56 per cent. The jojoba oil 

had a yellow hue, was without scent, and contained only trace amounts of triglyceride esters 

in addition to 97% monoesters of long-chain lipids. This chemical component is responsible 

for jojoba's self-stability and tolerance to elevated temperatures when compared to other non-

edible oils [6]. When SCO is treated with the transesterification procedure, the result is 

biodiesel, which has improved properties than plain diesel, such as greater intrinsic oxygen 

content, improved cetane, and less sulfur [7].  

Biodiesel as an alternative fuel in CI Engine 

Researchers evaluated CI engine efficiency and conducted ignition experiments using 

biodiesel derived from palm oil. It was discovered that using warmed oil resulted in 

decreased hydrocarbon (HC) and carbon monoxide (CO) pollutants but greater exhaust 

temperatures and nitrogen oxide (NOx) levels. Hydrous ethanol significantly reduces 

nitrogen oxide emissions, according to a critical analysis of numerous approaches to 

employing it in engines [10]. Results from the experiments demonstrated a drastic cut in 

various discharges compared to the diesel engine running on a single injection. In addition, 
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growth in brake thermal efficiency (BTE) was 4.46%. Propane-inducing diesel engines using 

waste seed biodiesel (WSBD) have been investigated [11]. Additionally, this revolutionary 

combustion method is being heavily tested in internal combustion engines. Minimizing 

pollutants and increasing burning effectiveness are the objectives [12].  Another study 

examined the effects of using sapota methyl ester on the parameters of combustion and EGR 

and their impact. The outcomes suggested that shorter delays occurred at higher CR values. 

Lowered levels of nitrogen oxides were also detected [13].  The trial was conducted using 

cottonseed biodiesel in a common rail direct injection (CRDI) engine using exhaust gas 

recirculation. It follows from these experimental probes that an EGR rate of 25% results in a 

nearly 33% reduction in NOx [14]. Recently, the binary combination concept was 

investigated as a result of superior blend stability, reduced expenditure, along minor changes 

in engine hardware settings. The research outlined in this paper attempts to use gasoline 

along with methyl acetate. The studies on methyl acetate additives in engine applications are 

very limited. They have achieved prominence because of their soot minimization capability 

[15]. This study looks at what happens when diesel and n-Pentanol/Karanja oil biodiesel are 

mixed. By including n-Pentanol, the properties of the biodiesel-diesel blend will be better at 

low temperatures. Pentanol's reduced fluidity and great instability will also significantly 

lower pollutants [16]. They discovered that a higher concentration of additives significantly 

decreased brake-specific fuel consumption (BSFC) and contributed to a steeper percentage 

decline in emissions [17].  

Studies on variable FIT and EGRs with Ternary fuel 

The experiment was carried out with a ternary combination of diesel and JME+ n-

butanol additive. It can be shown that jojoba oil with a high fraction of DBJ15 has the 

potential to achieve reduced pollutants in the short term while maintaining a high thermal 

efficiency [8]. Alcohol is made from a vast range of environmentally friendly ingredients. 

Alcohols, which include methanol, ethanol, and propanol, have a lower number of carbon 

atoms. Higher alcohols, on the other hand, have more carbon atoms than lower alcohols. 

These include pentanol, hexanol, heptanol, and decanol [9]. Researchers investigated the 

effects of combining diesel with 1-hexanol at different injection times and EGR percentages. 

Integrating 1-hexanol with an improved pre-combined burning phase prolonged the ignition 

impediment's length. At 23° BTDC and 10% EGR, there was a systematic reduction in both 

NOx and smoke [18]. The usage of EGR technology is one common strategy for decreasing 

exhaust-borne nitrogen oxides in IC engines [19]. Increase the ratio of 1-C6H14O in 
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diesel/WPO blends. Based on the data, it was found that an increased 1-C6H14O fraction in 

the mixture somewhat reduced engine performance. Smoke, CO, and NOx were reduced at 

the same duration, although there was a small increase in hydrocarbons [20]. Investigators 

conducted an empirical analysis of 2 greater alcohols, decanol and 1-hexanol, combined with 

various blends of diesel and biodiesel. In this case, the tertiary mixes were almost identical to 

pure diesel and had superior BTE than biodiesel. Because of the greater alcohol content, the 

tertiary mix has the minimum emission characteristics, such as the least amount of smoke 

emission [21]. It stipulates that a CRDI diesel engine running on a ternary mix fuel has its 

burning and exhaust properties carefully examined during reduced passive configurations. As 

a result, there is a decrease in smoke and NOx discharges. In addition to being very 

unpredictable, ethanol has an elevated level of O2 and an elevated latent heat of evaporation. 

Any of these actions might aid in lowering smoke and NOx pollutants [22]. Because ABE-

diesel blends have a bigger O2 level and latent heat of vaporization than plain diesel, the 

ABE-diesel operating attributes in a CO engine considerably reduce the production of soot 

particles and increase ultimate particle degradation. Additionally, a greater amount of air may 

be drawn into the spray from upstream due to the prolonged flame lift-off duration and 

ignition latency period [23].  

Overview of Machine Learning Prediction 

In recent years, the field of machine learning has made a lot of progress, and 

techniques like artificial neural networks (ANN), support vector machine (SVM), random 

forest (RF), extreme gradient (XG) Boost, and deep neural networks (DNN) have emerged 

rapidly [24]. Integrating engine research with machine learning modelling methodologies can 

enhance the calibration of the engine and the identification of the effective zone and minimise 

the trials and 3D simulations [25]. Machine learning (ML) is one of the cutting-edge 

developments in the field of artificial intelligence (AI). Machine learning algorithms (MLAs) 

are plentiful; they all involve the same repetitive application of mathematical formulas [26]. 

MLAs are classified into four distinct categories, which are very significant [27]. In MLAs, 

the unsupervised learning technique is used to identify the hidden pattern of data when a 

training dataset is not available for investigation. The supervised learning method is used to 

anticipate data patterns when a designated training dataset is available. When some pieces of 

information are missing from the training dataset, supervised learning can be transformed 

into semi-supervised learning. When analysing a data pattern and receiving input from an 

outside source, MLAs use the reinforcement learning technique [28]. The use of AI in 
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bioenergy processes is extremely limited. In addition, there is a shortage of research that 

addresses the potential of machine learning techniques for making predictions and enhancing 

efficiency. Researchers have found that ML shows considerable promise for overcoming 

obstacles to expanding bioenergy production [29]. There is also a lack of data on the 

effectiveness of methyl acetate and biodiesel in CI engines. Therefore, this article uses 

ternary fuel to address these gaps in the literature. The ternary fuel has been compared on 

several important metrics. These performance parameters are predicted using cutting-edge 

ML methods.  

Significance of the present work 

Contrary to the existing literature, this study ventures into unexplored territory by 

examining the potential of methyl acetate additives as a viable substitute in CI engines. It 

goes beyond the limited studies on the impact of methyl acetate inclusion in diesel and 

Simmondsia Chinensis oil methyl ester (SCOME) combinations, and explores the influence 

of EGR and injection time with variable projection using various ML systems. The objective 

is to employ these algorithms in analysing the emission and performance attributes of a diesel 

engine operating on blends of methyl acetate-diesel fuel fortified with antioxidants. This 

research conducts a comprehensive analysis to evaluate the predictive performance of neural 

networks, k-NN, support vector machines, linear regression (LR), and Long Short-Term 

Memory (LSTM) methods in comparison to commonly employed techniques. The evaluation 

is based on the R2 metrics. This paper proposes the utilisation of a deep learning algorithm, 

namely an LSTM model, as a novel approach for predicting engine emissions and 

performance. 

METHODOLOGY 

Evaluation of test samples 

Table 1 lists the key features of biofuel derived from Simmondsiaceae shrub seedlings, 

as well as the assessment variants. Because of the elevated fluidity and content of the SCO, 

its simple usage may result in injection problems. As a result, the transesterification process 

was modified in the conversion of SCO to reduce its consistency and concentration. Merck 

Millipore supplied the C3H6O2. A ternary mixture of C3H6O2, diesel, and biodiesel was 

created. By combining diesel with biodiesel, the binary variation was created. The diesel 

content in the two combinations was 70% and 50%, accordingly. The ternary blends were 

referred to as D50SCOME30MA20 (Diesel 50% + SCOME30% + Methyl Acetate 20% by 
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volume) is the MA20 blend. D70SCOME30 (Diesel 70% + Biodiesel 30% by volume) is the 

binary combination. 

Table 1 to be Insert here. 

Experimentation equipment and configuration 

Figure 2 depicts the experimental configuration. The Kirloskar TV1 CI engine was 

used for evaluation, which was a mono-cylinder, 4S, VCR-CI engine coupled to a 

dynamometer. In compliance with Nira i7r rules, it was restructured with the requisite 

receptors, sensors, and an accessible ECU to provide electronic injection.  An AVL digas 

444N tester was used for determining NOx, while an AVL 437C smoke meter was used to 

detect smoke (SO). To achieve the injection parameters needed for the assessment, a 

CRDI was required. The diesel delivery line was changed to link to the CRDI framework, 

and a high-pressure pumping was added to the fuel filtration. This serves as both a diesel 

holding reservoir and a pressure controller for the injection equipment. To regulate pressure, 

a rail pressure sensor is connected to the Nira i7r ECU. Although the original injector was 

unable to manage the much-increased injection pressures used by CRDI, a 6-hole solenoid-

regulated nozzle was chosen to complete the job. The ECU was used to alter the first sensors 

and actuators to guarantee that every part worked properly. If the engine runs properly, it is 

termed diagnostically competent. Table 2 summarises the experiment engine settings.  

Figure 1 to be Insert Here 

Table 2: to be Insert Here 

EGR Setup 

The EGR method is used to lower the in-cylinder and total temperatures of the charge, 

which in turn diminishes the emissions of NOX. This also makes EGR denser, which means 

its overall volume increases. A portion of the outlet gas is routed via the exhaust gas 

recirculation cooler and then into the air inlet. As the H2O in the exhaust gas recirculation 

cooler stays at the same temperature, it functions as a thermal replacer, taking in the heat 

from the outlet gases that are being held back. Here, the discharge was subjected to a 

temperature reduction of 36°C. The EGR valve regulates the amount of air that is recycled 

through the engine. The orifice size determines the exhaust gas flow rate. The best way to 

start the operation was to send the recycled exhaust gas to the input port. Equation (1) was 

used to calculate the amount of EGR rate. 
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The AVL 444 N gas equipment, renowned for its precision, was implemented to 

determine the amount of CO2 being released. This was achieved by adjusting the outlet 

discharge until the amount of incoming carbon dioxide met a certain value, ensuring accurate 

measurements. [30].  

Experimental Procedure 

 The baseline emissions and performance characteristics from the perspective of 

replacing 50% of the diesel volume with biodiesel.  Tests conducted on a binary blend that 

contained 70% diesel and 30% biodiesel. Compared to baseline diesel, smoke emissions 

were greater, and performance was worse. Therefore, we employed a well-established 

additive-blending approach to reduce tailpipe smoke below diesel operation levels. The 

methyl acetate was chosen for this study because of its similar properties to diesel. The 

study aims to replace 50% of the volume of diesel with an alternative fuel. We kept the 

diesel volume constant, lowered the biodiesel by 20% vol., and balanced it with methyl 

acetate. The ternary mix included 50% diesel, 30% SCOME, and 20% methyl acetate. 

Compared to the binary option, the ternary mix operation improved combustion and 

reduced smoke emissions below diesel. But the ternary blend did more tests at full load, 

changing the fuel injection time (FIT) (23°bTDC, 21°bTDC, and 19°bTDC) and the exhaust 

gas recirculation (10%, 15%, and 20%) to find the best setting for lowering NOx and smoke 

emissions, as well as producing better performance. The study used diesel, two binary, and 

one ternary blend at normal operating conditions of 23º bTDC without EGR. Based on the 

examination, the ternary blend (D50SCOME30MA20) gave the best performance among 

the other blends at a normal setting. It is nearly closer to baseline fuel. Consequently, we 

conducted enhancement tests on the ternary blend of D50SCOME30MA20 (MA20) at 

compression ratio (CR19) and injection pressure (IP 600 bar) remained constant. Conducted 

the three trials on the same day and in the same weather conditions to establish consistency. 

Machine Learning (ML) Algorithms 

 ML is a recurrently employed form of AI technique. Artificial intelligence (AI) is 

widely regarded as an appealing and widely embraced technology for its ability to effectively 

identify and address various application domains, owing to its exceptional capacity for 

achieving high levels of accuracy [27]. The system is designed to possess the capacity for 
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autonomous observation and subsequent prediction of unknown reactions. Without a doubt, 

user attributes and the success of their training have a direct impact on the effectiveness of 

ML algorithms [29]. The current study delves into a comprehensive analysis of 4 distinct ML 

algorithms. The four machine learning models discussed in this context are LR, neural 

networks (NN), SVM, and LSTM. All algorithms are executed with Rapidminer Studio 

Version 9.6. The grid investigation methodology is employed in this research to predict the 

model parameters. The algorithms employed in this study are utilised to forecast engine 

responses, namely BSEC and BTE, as well as NOx, CO, HC, and smoke. During the training 

process, three specific inputs are utilised, namely engine test fuels, FIT, and EGR rates. The 

study utilised a dataset including nearly 288 data points. The dataset was partitioned 

randomly using the shuffled sample technique in the methods. The training phase of the 

algorithms utilised 80% of the available data points, while the remaining 20% was allocated 

for the testing phase. 

ANALYSIS OF ENGINE OUTPUT PARAMETERS 

Combustion investigation 

In-cylinder pressure analysis 

 Figure 2a illustrates the in-cylinder pressure (ICP) discrepancies observed at various 

crank angle (CA) sites for the examined variations. Under the same circumstances, Diesel, 

D70SCOME30, D50SCOME50, and D50SCOME30MA20 were 69.96, 69.82, 69.29, and 

69.80 bars. The extended ignition delay of the MA20 variation, where more fuel ignites 

impulsively, led to a higher ICP compared to the binary combination. At 23°, the PCPs for 

10%, 15%, and 20% exhaust gas recirculation were 69.29, 68.99, and 67.55 bar. At FITs of 

21° and 19°, the ICPs for exhaust gas recirculation levels of 10%, 15%, and 20% were 66.04 

bar, 66.95 bar, 65.19 bar, 62.99 bar, 61.69 bar, and 60.46 bar. Retarding the FIT from 23° to 

19° at any exhaust gas recirculation rate results in a drop in the ICP. At 10% EGR, the ICP 

decreased by 9%. Delayed ignition reduces fuel burning due to the bTDC drop, resulting in 

less uniform volume ignition and a lower ICP.  [31]. The EGR levels are enhanced from 10% 

to 20%, and PCP is reduced further at any given injection timing.  For instance, at a FIT of 

23°bTDC, the PCP dropped by 2.5%. This is because the discharge emissions increased the 

specific heat, leading to a decrease in PCP. [17]. 

Figure 2 to be Insert here. 
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Heat release rate analysis (HRR) 

Figure 2b reveals HRR disparities at different crank inclinations for the evaluation 

fuels. The HRR for Diesel, D70SCOME30, D50SCOME50, and D50SCOME30MA20 were 

45.63 J/°, 43.08 J/°, 40.43 J/°, and 48.13 J/°, correspondingly. Here, the MA20 blend 

portrayed higher HRR, which is resultant of the collective effect of lengthier ignition 

duration and better-oxygenated circumstances that increase the flame speed in the course of 

combustion, resulting in elevated HRR values [32]. When Increasing EGR levels and 

decreasing injection time cause the HRR graph to shift from left to right. EGR levels of 10%, 

15%, and 20% at 23° have heat release rates of 48.51 J/°, 51.21 J/°, and 53.84 J/°. Similarly, 

for FIT values of 21° and 19°, HRRs are 47.56 J/°, 47.73 J/°, 49.93 J/°, 49.42 J/°, 49.45 J/°, 

and 52.07 J/° at EGR rates of 10%, 15%, and 20%. When changing the injection time from 

23° to 21°, the HRR's peak point decreased. The HRR decreased from 48.51 to 47.56 J/° at 

10% EGR. The decrease in injection time from 21 ° to 19 ° increased HRR. Due to a decrease 

in injection time, the FIT retards from 23° to 21°, reducing premixed combustion fuel usage. 

This reduces fuel consumption and increases heat release.[33]. A longer ignition delay due to 

retarded FIT increased the early mixed-period burning percentage and HRR excesses. HRR 

optimisation occurred when EGR rose from 10% to 20%. HRR improves by 10% at 23°, but 

EGR rises from 0% to 20%. The EGR's impact prolongs ignition lag. The increase is due to 

the preliminary mixed-burning step using the supplemental fuel. Similar findings were 

reported. [20].   

Performance investigation 

Brake Thermal Efficiency 

 Figure 2c shows the D50SCOME30MA20 blend's brake thermal efficiency at various 

FIT and exhaust gas recirculation settings. Diesel, D70SCOME30, D50SCOME50, and 

D50SCOME30MA20 had BTEs of 34.21%, 32.63%, 30.80%, and 33.53% at optimal output 

and engine standard specifications. The D50SCOME30MA20 mix had 2.3% greater BTE 

than the D50SCOME50 blend due to improved low heating value, atomisation, and inborn 

O2, which accelerated combustion. Biodiesel ignites faster, especially during flame 

expansion, due to its higher thermal potential and oxygen content. [34]. The value of BTE is 

32.12%, 31.96%, and 29.75% at 23° with EGR settings of 10%, 15%, and 20%. The BTE is 

33%, 32.73%, 31.14%, 31.75%, 31.16%, and 28.99% at 21° and 19° FITs. According to 

Figure 2c, the tertiary mix delivered at 21° had the highest BTE, 2.5% more than that 
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provided at 23° at the same EGR level. HRR studies support this. The ternary mix at 21° 

bTDC recovers more outputs and dissipates thermally faster, increasing BTE. Extended 

exhaust gas recirculation lowers the thermal efficiency of the ternary mix brake system. 

Because exhaust gases hinder combustion, BTE is lower [30].  

 

Brake-specific fuel consumption  

 Brake-specific fuel consumption (BSFC) is a crucial measure of fuel efficiency for 

engines that generate rotational power. It quantifies how effectively the engine converts fuel 

into work, making it a key metric in our study. The BSFC measure's calorific value (CV), a 

significant biodiesel property, plays a vital role in this process. Reduced calorific values 

increase fuel consumption to provide the same power output; therefore, higher CVs  reduce 

BSFC, indicating better fuel efficiency. [35]It's important to note that although BTE and 

BSFC have an adverse connection, diesel with a reduced BTE has a higher BSFC. As a 

consequence, the rationale for the changes in BTE among biodiesel, biodiesel-alcohol 

combinations, and diesel applies to BSFC as well. This reaffirms the scientific rigour and 

validity of our research. [21]Figure 2d provides a practical perspective, showcasing the 

D50SCOME30MA20 variant's BSFC at different FIT and exhaust gas recirculation levels. 

Diesel, D70SCOME30, D50SCOME50 combination, and D50SCOME30MA20 mixture had 

BSFCs of 0.247, 0.28, 0.27, and 0.258 kg/kW-hr at stated capacity and engine standard 

characteristics. D50SCOME30MA20 has a lower BSFC than D50SCOME50. Due to its 

higher O2 and CV, the ternary type uses less fuel to create similar energy. At 23° bTDC, the 

engine's BSFC was 0.28, 0.29, and 0.31 kg/kW-hr for 10%, 15%, and 20% EGR. At 10%, 

15%, and 20% EGR, the engine's BSFC was 0.264, 0.272, 0.282, 0.273, 0.28, and 0.291 

kg/kW-hr at FITs of 21° and 19°. Initially, the tertiary mixture BSFC dropped. We found that 

delaying the FIT from 23° to 21° and then to 19° increased it. Since the FIT was adjusted 

from 23° to 21°, this happened. This improvement allowed full burning by locating the 

combustion process at TDC. Thus, the engine needed less power to reach the speed. 

Lowering FIT from 21° to 19° caused heat dissipation lowered output and increased BSFC 

during the expansion stroke. For the ternary mix, higher EGR was due to deterioration, which 

changed the air-fuel proportion and reduced burning, increasing BSFC. [19]. 

Figure 3 to be Insert here. 

Exhaust analysis 
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NOx emission 

 Figure 3a shows nitrogen oxide differences for the D50SCOME30MA20 mix at 

different FIT and EGR levels. Diesel, D70SCOME30, D50SCOME50 mix, and 

D50SCOME30MA20 blend emitted 1859, 1856, 1847, and 1913 ppm of NOx under 

specified power circumstances and engine stock settings. The ternary mix emitted more NOx 

than the binary form because methyl acetate stimulates burning, raising gas temperatures and 

NOx. Biodiesel burns more thoroughly due to its high oxygen content, raising peak 

temperatures and NOx emissions [36]. Concerning EGR values of 10%, 15%, and 20%, at 

23° bTDC, the NOx emission was 1536, 1100, and 642 ppm, correspondingly. Similarly, at a 

FIT of 21° bTDC and 19° bTDC, the nitrogen oxide values were 1231 ppm, 1012 ppm, 540 

ppm, 1088 ppm, 753 ppm, and 335 ppm, respectively, at EGR rates of 10%, 15%, and 20%. 

Delaying injection until 19° bTDC instead of 23° bTDC significantly reduced NOx 

emissions. The exhaust gas recirculation rate was set at 10%, and the injection time was 

reduced from 23° to 21° bTDC, reducing NOx emissions by 17%. Delaying the FIT reduced 

NOx by 30%. The original analysis found that a ternary mix at 21° bTDC increased 

centralized burning. A shorter ID time and lower fuel consumption helped keep nitrogen 

oxides low [35]. The retardation of the explosive process by 21° to 19° bTDC displaced the 

combustion mechanism, changing the TDC point. This improvement allowed LTC mode 

adoption, reducing nitrogen oxide emissions significantly [22]. The charge mixture's oxygen 

concentration disproportionately affected NOx formation, which accelerated chemical 

processes and boosted combustible temperatures. The charge mixture's oxygen content 

affected NOx production. Raising the EGR rate from 10% to 20% for a certain injection 

period reduced NOx output by more than twice. The dilutive impact of increased thermally 

sensitive exhaust gases reduced exhaust temperatures. [37]. In addition, the chemical reaction 

speed was impacted by the restricted supply of O2.  

Hydrocarbon 

 Figure 3b shows the D50SCOME30MA20 variant's HC at different FITs and EGRs. 

HC emissions at specified power output and engine settings for Diesel, D70SCOME30, 

D50SCOME50 mix, and D50SCOME30MA20 blend had HC emissions of 42, 48, 56, and 40 

ppm, respectively. This shows that ternary variants reduce HC. In the diesel/SCOME 

combination, methyl acetate increased O2 levels. This sped up the oxidation reaction even in 

areas with a lot of fuel, breaking down HCs that were not fully depleted and lowering HC 
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emissions. At 23° bTDC, HC emission was 47, 53, and 69 ppm for 10%, 15%, and 20% 

EGR. In the same way, HC emission was 49 ppm at FITs of 21° bTDC and 19° bTDC, 59 

ppm at 76° bTDC, and 53, 61, and 83 ppm at 10%, 15%, and 20% EGR rates. Increasing 

exhaust gas recirculation (EGR) to 10% and fuel injection time (FIT) from 23° to 19° bTDC 

increases hydrocarbon (HC) emissions by 11%. Because of the delayed injection, the 

membrane was more likely to get wet, and fuel was held in poor combustion zones. This 

produced unburned or partially burned HC [30]. Increasing EGR intensity from 10% to 20% 

resulted in increased HC emissions. This tendency to release HC is caused by exhaust gases 

lowering the gas temperature. This makes it difficult for hydrocarbons to split into carbon 

particles, releasing more HC [31].   

Carbon monoxide 

 Figure 3c shows CO emission differences in the D50SCOME30MA20 blend at 

different FIT and EGR settings. Diesel, D70SCOME30, D50SCOME50 mix, and 

D50SCOME30MA20 blend had volume-based CO emissions of 0.152, 0.171, 0.194, and 

0.133%. In the diesel/SSCOME blend, methyl acetate decreased CO emissions more than in 

the D50/SCOME50 blend. Methyl acetate aids CO-to-CO2 Conversion because it transports 

extra O2 during combustion. [38]. It’s found that the CO emission at 23° bTDC was 0.161% 

vol., 0.326% vol., and 0.912% vol., respectively, when considering the EGR percentages of 

10%, 15%, and 20%. Similarly, at FITs of 21° bTDC and 19° bTDC, the CO was 0.217% 

vol., 0.343% vol., 1.231% vol., 0.244% vol., 0.374% vol., and 1.613% vol., respectively, at 

EGR rates of 10%, 15%, and 20%. With delayed FIT, CO levels increased but decreased with 

higher EGR rates. CO climbed 3.5% when the FIT was shortened from 23°bTDC to 

19°bTDC at 10% EGR. Due to a shorter delay period, the A/F combination had less duration, 

potentially boosting CO emissions. However, increasing EGR frequency greatly lowered CO 

generation. [39]. In a specific scenario of FIT 23°bTDC, increasing the EGR from 10% to 

20% resulted in a 60% increase in CO. EGR's reduced air input may have generated an 

oxygen-deficient combustion zone, limiting CO oxidation. Lower gas temperatures reduced 

the OH-reactive concentration. However, increasing EGR frequency greatly lowered CO 

generation. [40].  

Smoke opacity 

 Figure 3d shows the D50SCOME30MA20 mix SO at different FITs and EGRs. 

Diesel, D70SCOME30, D50SCOME50 mix, and D50SCOME30MA20 blend had SO at 
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specified power levels of 57.4%, 64.2%, 60.8%, and 51.2%, respectively. The ternary mix 

has far lower smoke opacity than the binary form. Alcohol has inherent O2 molecules that 

provide O2 for combustion, reducing smoke [34}. At 23 ° bTDC SO, EGR levels of 10%, 

15%, and 20% were 52%, 62.5%, and 83.2%, respectively. For FITs of 21° and 19° bTDC, 

the smoke opacity was 56.9%, 66.5%, 88.7%, 61.2%, 69.2%, and 92.5% at EGR rates of 

10%, 15%, 20%, respectively. The ternary variant's changes increased smoke production 

compared to the default. At 10% EGR, decreasing FIT by 23° to 19° bTDC increased SO by 

15%. Due to reduce in-cylinder gas pressures during delayed intake latency, the A/F 

proportion changes. This increases smoke from carbon oxidation [5].  Even more than the 

FIT delay, rising EGR levels raised SO. Increasing EGR from 10% to 20% at 23°bTDC 

increased SO by 62.5%. Increased exhaust gas recirculation due to decreasing O2 levels 

hinders combustion [36]. 

MLAs Prediction Analysis 

In this study, the application of deep learning, namely the LSTM model, is utilised as 

the optimization framework. LSTM was used to predict BTE, BSFC, CO, HC, smoke, and 

NOx using FIT and EGR variables. First, we train the LSTM model with 288 experimental 

observations. The network's performance was evaluated using a training dataset of 80% of the 

experimental data, a validation dataset of 10%, and a testing dataset of 10%. These may be 

assessed using training and testing of MRE and R2-values. After that, the stored network 

generates output values for the 25 randomly picked input values. Equation (2) illustrates the 

correlation coefficient (R2), while equation (3) illustrates the MRE. Where ‘ti’ is the target 

value and ‘oi’ is the theoretical output value, 

R2 = 1 − (
∑ (ti−oi)2n

i=1

∑ (oi)2n
i=1

)    --------      (2) 

MRE =
1

n
 ∑ |100 ×

(ti−oi)

ti

n
i=1     -------- (3) 

Let “ti” and “oi” Represent the predicted and measured values, respectively. "t" 

denotes the mean of the measured values, while "n" represents the observations. This method 

contains knowledge of a particular model's anticipating power regarding a certain dataset. 

The coefficient of determination, denoted as R², has a range of values from 0 to 1. An R² 

number nearing 1 signifies a higher level of performance [41].  

Figure 4 to be Insert here. 

Evaluation of prediction models 
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 R2 levels are calculated by altering the quantities of training and evaluating 

information. The R2 for various training and assessment information proportions 

demonstrates that the model is consistent beyond 80:20 ratios. The score approaching 100% 

indicates that the model can reflect all variance in output information. The hypothesised 

approach is contrasted to the R2 values of models developed with linear regression, support 

vector machine, neural networks, K-nearest neighbours (K-NN), and Deep Learning (LSTM) 

approaches. Figure 5 (a) depicts model evaluations according to the R2 value. The suggested 

model surpasses the previous approaches and yields excellent outcomes. The LR, NN, SVM, 

and LSTM models best fit the narrative or hypothesis of the current examination. At the same 

time, Figure 5 (a) includes a broad comparison to provide a comprehensive overview of 

machine learning models. Four distinct ML models predicted values are close to unity. K-

NN, PR, GP and RVM models predicted values are very low compared to the unity. 

Therefore, this model is not suitable for the current investigation. The R2 values were 

determined to be 0.921 and 0.96, respectively. The results of the LSTM replication 

demonstrate its capacity to anticipate crucial features accurately. The MRE values for the 

stated features range from 1.74% to 4.68%, Figure 5 (b) shows that FIT, EGR, BTE, BSFC, 

and NOx strongly correlate with the target column. Even little changes in these variables 

affect the target column. CO, HC, and smoke are weaker but favourable connected to the 

target column. Thus, changes in these columns may not impact the target column. FIT, EGR, 

BTE, BSFC, and NOx predict the target column well, while CO, HC, and smoke do not. In 

future modelling and analysis, knowing how qualities relate to the target variable is vital. 

Figure 5 to be Insert here. 

Validation of the LSTM Model 

The methodology's practicality must be validated before deployment. The Long Short-Term 

Memory (LSTM) model improved engine operating settings for experimental studies. The 

programme generated expected significance levels from replications during failure periods. 

Figure 4 illustrates the training process through a flow chart, and Table (3) was used to verify 

these results. Equation (4) calculates the value error percentage. 

𝐏𝐞𝐫𝐜𝐞𝐧𝐭𝐚𝐠𝐞 𝐨𝐟 𝐄𝐫𝐫𝐨𝐫 (% 𝑬) =
𝐎𝐛𝐬𝐞𝐫𝐯𝐞𝐝 𝐕𝐚𝐥𝐮𝐞−𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐕𝐚𝐥𝐮𝐞

𝐎𝐛𝐬𝐞𝐫𝐯𝐞𝐝 𝐕𝐚𝐥𝐮𝐞
 𝒙 𝟏𝟎𝟎    ------------- (4) 

The best results can only be obtained through appropriate verification. To account for LSTM 

fuel injection time (FIT) and EGR, the largest input variable maintained from testing was the 

mean. Equation error rates range from 0.16 to 5.68%. The analysis found fewer than 6% 
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inaccuracies in emissions and efficiency projections. LSTM makes it easier to understand 

how elements interact. Thus, the Long Short-Term Memory (LSTM) model may predict 

diesel engine characteristics. Machine learning algorithms may predict pollutants and 

operational factors. Other quantitative and computational methods may struggle with the 

problem's complexity and diversity. 

CONCLUSION 

The research work outlines the methyl acetate, FIT, and EGR settings affect CI engine 

parameters in diesel and SCOME variations, as found below. 

➢ MA20 injected at 21°bTDC, and 10% EGR had the highest BTE (33%), correlating with 

the remaining operating conditions. However, the BTE was somewhat lower than that of 

the MA20 blend at default settings. 

➢ In MA20 fuel, 21°bTDC and 10% exhaust gas recirculation reduce nitrogen oxides in 

comparison to other fuels. The MA20 mix decreases the SO by 11% at 21°bTDC and 

10% exhaust gas recirculation. However, it was 1% less than baseline diesel. Later, FIT 

and higher EGR resulted in increased hydrocarbon and CO outflow. 

➢ The LSTM methods estimate engine output characteristics that are close to unity. LSTM 

showed the highest R2 and MRE values, which are 0.961 and 1.74%, respectively. All 

measurements combined show that the other algorithms predict engine responses the 

least. 

➢ When considering various injection timings and EGR rates with the MA20 mix, 21° 

bTDC and 10% EGR are generally the best operating conditions. The results suggest that 

a Simmondsia Chinensis seed biodiesel mix with MA20 volume can reduce pollutants in 

CRDI CI engine applications. 

           Choosing the best fuel injection time and EGR rate to reduce NOx and smoke 

emissions depends on many parameters, including engine type, fuel properties, and engine 

performance. According to the provided facts, decreasing emissions may begin with delayed 

fuel injection from 23º to 19º bTDC. In contrast, brake thermal efficiency, fuel consumption, 

and engine power output should be considered when selecting optimal operating conditions. 

Balancing emissions reduction and engine performance is essential. The delayed injection 

resulted in a decrease in NOx, which in turn led to a reduction in engine performance. 

Therefore, to evaluate emissions and performance, we suggest conducting a series of tests or 

simulations under 21º bTDC at 10% EGR [42,43]. 
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List of Symbols and Abbreviations 

ASTM  
American Society for Testing 

and Materials 
CO      Carbon monoxide, % vol. 

bTDC    Before Top Dead Centre, CA   HRR                              Heat Release Rate, J/deg 

BSFC  
Brake Specific Fuel 

Consumption (kg/kW-hr) 
ICP                               In-cylinder pressure, bar   

BTE    Brake Thermal Efficiency, % NOx                                                Nitrogen oxides, ppm 

CA       Crank Angle, deg PPM                             Parts Per Million 

CI        Cetane Index MLAs                             
Machine Learning 

Algorithms 

CR Compression Ratio  LSTM Long Short-Term Memory 

CRDI   Common Rail Direct Injection NO Neural Network 

CV       Calorific value LR Linear Regression 

SCOME                 
Simmondsia Chinensis Oil  

Methyl Ester 
SVM 

Support Vector Machine 

MA                      Methyl Acetate  KNN K-Neural Network 

D70SCOME30        Diesel-70%, SCOME-30% PR Polynomial Regression 

D50SCOME50               
Diesel-50%, SCOME -

50% 
GP Gaussian Process 

D50SCOME30MA20   
Diesel-50%, SCOME - 

30%, Methyl Acetate -20% 
RVM Relative Vector Machine 

ECU                              Electronic Control Unit R2                                     Squared Correlation 

VCR 
Variable Compression 

Ratio 
MORE Mean Relative Error 

HC                                Hydrocarbons, ppm RMSE Root Mean Square Error 
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Figure Captions 

 

Figure 1 Schematic layout of Experimental setup  

Figure 2 (a) ICP, (b) HRR, (c) BTE and (d) BSFC for MA20 variant at various FIT and EGR 

rates  

Figure 3 (a) NOx, (b) HC (c) CO and (d) Smoke for MA20 at different FIT and EGR levels  

Figure 4 Machine learning algorithm models flow chart   

Figure 5 (a) Comparison of R2 value and 5 (b) Heatmap representing correlation for Machine 

Learning Algorithms  
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Table 1 Characteristics of test fuels 

 

 

 

 

 

 

 

 

 

 

 

 

Property Standard Diesel SCOME D70 SCOME30 
D50SCOME30 

MA20 

Density (kg/m3) ASTM  D 1298 832 877  846   873 

Kinematic viscosity 

@40°C (cst) 
ASTM  D 445 2.89 5.12 3.85 3.51 

Flash Point (°C) ASTM  D 92 69 152 96.9 98.7 

Cetane Index (CI) ASTM  D 976 47 51 - - 

Calorific Value 

 ( MJ/kg) 
ASTM  D 240 42.5 38.21 41.28 

39.12 
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Table 2:  Technical Specification 

 

Make and Model Kirloskar, TV1 

 Cylinders & Stroke 1 & 4 

 Bore  87.5mm 

 Stroke length 110mm 

 Swept volume 661cc 

 Speed 1500 rpm 

 Rated output 3.5 kW at 1500 rpm 

 CR 1:17.5 

 Cooling method Water-cooled 

  IT, CA bTDC 23° 

  FIP 600 bar 
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Table 3 Verification of Forecast and Real values. 

 

 

 

 

 

 

 

 

 

 

 

 

Biodiesel Proportion 

(%) 

Load 

(%) 

Fuel 

Injection 

Timing 

(FIT) 

EGR Value  
BTE 

(%) 

BSFC 
(kg/kw-

h) 

NOx 

(ppm) 

MA20                         
 

(D50SCOME30MA20) 

100 

 FIT 21˚ 

CA 

(bTDC) 

10 % 

Forecast 32.63 0.264 1231 

Real 33 0.255 1229 

Error (%) 1.12 3.4 0.16 

  

HC 

(ppm) 

CO 

(%) 

Smoke 

(%) 

Forecast 49 0.217 56.9 

Real 50.4 0.23 58.3 

Error (%) 2.77 5.68 2.4 
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Figure 4 

 

 

 

 

 

 



29 

 

                                                            

 

                                                           

                                                         Figure 5 

 

 


