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Article Highlights  

• A numerical study of the flow around particle agglomerates was performed 

• Steady RANS turbulence models were tested to estimate the drag coefficient 

• SST k-ω and Spalart-Allmaras turbulence models better represented the flow 

• SST k-ω turbulence model presented lower deviations from the empirical correlation 

• RNG k-ε presented the worst results, mainly for intermediate Reynolds number 

 
Abstract  

Numerical simulations of the flow surrounding particle agglomerates were 

carried out using computational fluid dynamics to assess the ability of five 

RANS turbulence models to estimate the drag coefficient in particle 

agglomerates. Simulations were carried out in steady conditions for 

Reynolds numbers between 1 and 1500. Streamlines showed that 

symmetrical agglomerates present a velocity profile similar to the single 

sphere profile. Results showed that both Spalart-Allmaras and SST k-ω 

turbulence models could represent the flow profile in the regions near and 

far from the walls of the agglomerates and the wake region in the rear of the 

agglomerates. The RNG k-ε model showed poor quality in predicting the 

velocity profile and the drag coefficient. The drag coefficient obtained by 

simulations presented a trend better represented by the Tran-Cong model, 

also showing that deviations from the predictions decreased as the packing 

density of the agglomerate increased. The use of steady RANS simulations 

showed to be a feasible and efficient method to predict, with low 

computational cost, the drag coefficient in particle agglomerates. For the 

transition and turbulent flows, results presented good agreement, with 

deviations between -15% and 13%, while for lower Reynolds numbers, 

deviations varied between -25% and 5%. 

Keywords: particulate matter, particle agglomerates, turbulence, drag 
coefficient, computational fluid dynamics. 

 
 

In designing equipment involving particle-laden 

flows, it is essential to correctly model the interaction 

between the two phases to obtain consistent results. 

The forces of fluid-particle interaction are directly 

related to the characteristics of the particles, such as  
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size, shape, elasticity, and roughness, which are 

determinants in the performance of equipment such as 

the fluidized bed [1—4]. Usually, in models that simulate 

fluidized bed reactors, the drag force is related to the 

porosity of the bed, assuming that the particles are 

distributed homogeneously [5—8]. However, depending 

on their physical, superficial, and mechanical 

characteristics, the collision, attraction, and friction 

between the particles can lead to the formation and 

irregular distribution of agglomerates, altering the flow 

dynamics through pressure oscillations [9,10]. 

Indeed, the behavior of particle agglomeration in 

different arrangements deserves attention, as it occurs 

in almost all forms, whether naturally or artificially. One 

can  find  such  kind  of  irregularly  shaped  particles  in  
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many applications, such as sedimentation and 

flocculation of fine particle aggregates in rivers and 

lakes, chemical mixing, mineral processing, stirred 

tanks, powder sintering, and manufacturing with phase 

change processes [11—13]. For several of these 

processes, determining the particle's terminal velocity 

is an important stage for designing and optimizing 

processes and equipment. Since this velocity is 

straightly dependent on the body's drag coefficient, 

such a study is important to simulate the movement of 

such particles. 

Due to the lack of an analytical solution, the 

literature presents several empirical correlations 

designed to predict the drag coefficient of spherical and 

non-spherical particles associated with different ranges 

of validity and precision [14—19]. To obtain predictions 

that better represent the empirical observations, shape 

descriptors have been developed in recent decades to 

quantify aspects such as shape, circularity, roughness, 

and sphericity. However, the correlations present some 

disadvantages, such as the fact that the first studies are 

mainly, based on experiments with regularly-shaped 

particles such as cubes, cylinders, and disks, which 

reduces the level of detail and accuracy in the 

description of the local scale phenomena [20,21]. 

For the evaluation of the drag coefficient of 

isolated groups of ordered packed spheres moving 

through Newtonian fluids, Tran-Cong et al. [11] 

conducted laboratory measurements, leading to a 

correlation with good agreement over a limited range of 

Reynolds numbers and body dimensions but covering 

most of the irregularly shaped particles in engineering 

applications. Beetstra et al. [20] compared these 

experimental data with lattice-Boltzmann simulations 

for the same conditions, aiming to expand the field of 

the influence of the geometry on the disturbance of 

fluidized beds, stating that, indeed, the drag force on 

each particle is strongly dependent on the inter-particle 

distance variation. The results showed how the 

omission of the agglomeration effect could cause 

deviations between the simulated equipment behavior 

and experimental results. 

The literature presents studies using the lattice-

Boltzmann method (LBM) and Direct Numerical 

Simulation (DNS) to evaluate particle drag coefficients. 

For industrial-scale problems, these approaches are 

considered impractical, due to the high computational 

effort, mainly for high Reynolds numbers, since the 

simulations must be carried out in a transient 

formulation with small timesteps and the mesh must be 

fine enough, to respect the Kolmogorov scales [22,23]. 

However, in the field of sub-grid scale, they are very 

useful for understanding the influence of turbulence in 

small-scale vortices. The LBM is useful for CFD to 

understand particle flow due to the algorithm’s 

simplicity and explicit methods [24]. Since the method 

presents a high resolution of the domain, the studies 

present better accuracy, as observed in studies such as 

Dietzel and Sommerfeld [25], that used the LBM to 

investigate complex geometry with a high discretization 

around the agglomerate and obtained deviations lower 

than 10% for lower values of Reynolds, where 

deviations are generally by the order of 20% [25]. 

DNS is an important tool to estimate, with 

accuracy, correlations for the micro-scale transport 

coefficients, one of the essential parameters for coarse-

grained models of fluid-particle systems [21]. To 

understand the fluid-particle mass transfer in random 

arrays of particles, Mehrabadi et al. [26] performed 

DNS in a homogeneous flow, aiming to isolate the 

effect of interphase interactions on a particle 

agglomerate, developing a gas-solid drag law for 

clustered particles based on the conclusion that particle 

clusters lead to a drag reduction. Another recent 

example of this method is the study of Chen et al. [27], 

where the drag and lift in particle agglomerates were 

studied for different orientations and sizes of particles 

and presented deviations between 2 and 4%. However, 

due to the method's constraints, the study focused on 

understanding the hydrodynamic on agglomerates for 

a range of Reynolds below 100, highly dependent on 

the projected area [25]. 

In contrast to the large number of empirical 

correlations to predict the drag coefficient of irregular 

particles, there is a scarcity of studies in which specific 

correlations have been proposed to determine drag 

forces acting on particle agglomerates. The literature in 

the computational field using the unsteady formulation, 

such as LES and DNS, focuses on analyzing simple 

bodies – such as regularly-shaped single bodies – due 

to the difficulty in generating uniform meshes around 

complex bodies, as well as limited to low Reynolds 

flows, generally below 250, due to the computational 

demands associated with higher Reynolds 

numbers [22]. The use of LBM eliminates the difficulty 

of mesh generation, so we observe studies on more 

complex and arbitrary bodies [25] with an 

agglomeration of several spheres. However, the 

method is still limited for low Reynolds flows since the 

forces acting on walls inside the flow are directly 

calculated in the smaller scales [20,21,24—27]. 

Because of the lack of studies for higher Reynolds 

flows and since the high computational cost needed to 

perform transient simulations, we focus on proposing a 

methodology using the steady formulation to simplify 

the problem of calculating the drag coefficient in 

complex bodies, which allowed the investigation of the 

flow  for  a  wide  range  of  Reynolds  numbers.  Since 
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turbulence plays an important role in the flow profile as 

we increase the velocity of the fluid, we focused on how 

its modeling interferes with the drag estimation in 

particle agglomerates. So, the present paper evaluates 

the drag coefficient of three different conformations of 

irregularly shaped particle agglomerates composed of 

spherical particles surrounded by a water flow, varying 

the turbulence model tested. The models were 

compared using steady RANS turbulence models to 

investigate their robustness to predict the drag acting in 

particle agglomerates for different conformations to 

reduce the computational costs of unsteady 

simulations, such as URANS, LES, DNS, or LBM. 

 

 
MATERIALS AND METHODS 

Materials 

This study was carried out in the theoretical field, 

using CFD simulations to obtain the flow profile of water 

around particle agglomerates. The drag coefficient of 

the particles was calculated by CFD simulations using 

five different turbulence models. The results were 

compared with five empirical correlations for estimating 

the drag coefficient in irregularly-shaped particles 

present in literature to find which is robust enough to 

represent the trend of the results of the drag coefficient 

in particle agglomerates obtained by simulations. 

In the theoretical field, the drag coefficient for 

spheres is simple to calculate since it depends on a 

balance of forces. This balance leads to Eq. (1) 

( )
D

p

f p f p f

F
C

A u u u u0.5
=

− −
   (1) 

where FD is the drag force. The drag depends on the 

fluid, particle, and flow characteristics, i.e., fluid density 

and velocity, ρf and uf, respectively, and the particle 

velocity and reference area, up and A, respectively. The 

particle in the domain of the present study is fixed, 

leading to a particle velocity equal to zero, so the fluid 

flow profile and the drag coefficient are given 

exclusively by the behavior of the fluid flow around the 

particle.  

To determine which correlation better follows the 

trend observed in the drag coefficient obtained by CFD, 

we must define some criteria to compare the 

simulations with the correlations. The first 

consideration was analyzing and comparing the flow 

profile for each of the five turbulence models with the 

behavior expected by the literature. This step is 

important to understand if the results obtained for the 

drag coefficient are reliable. 

Since a quantitative analysis is crucial, we also 

evaluated the percent deviation between simulations 

and correlations, estimated by Eq. (2). 

corr sim
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where 𝐶𝐷
𝑐𝑜𝑟𝑟 and 𝐶𝐷

𝑠𝑖𝑚 are the drag coefficients obtained 

by the correlation and the simulation, respectively. 

Another quantitative analysis considered was the root-

mean-square error, RMSE, given by 
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where 𝑥�̂� is the value of the 𝑖𝑡ℎ data of a parameter 

estimated by the correlation, 𝑥𝑖 is the value of the 𝑖𝑡ℎ 

data of the parameter obtained by simulation – i.e., the 

drag coefficient – and N is the local data in the sample 

studied. 

Numerical simulations 

The numerical simulations were carried out using 

the software ANSYS 14.5. The computational domain 

and numerical meshes of the particle agglomerates in 

this study were generated using the software ANSYS 

Design Modeler and Meshing. ANSYS Fluent 14.5 was 

used to solve the model equations. CFD-Post was used 

to analyze the fluid flow profile and the drag coefficient. 

Design and mesh generation 

Simulations were carried out for three different 

computational domains, varying the geometry of the 

agglomerates containing three, four, and five particles, 

where the radius of each particle in the agglomerate 

measures 0.5 cm. The domain generated corresponds 

to a parallelepiped with a height and width of 0.1 m and 

a length of 0.2 m. 

Aiming to generate well-structured meshes, the 

domain was divided into two cubes, as presented in 

Figure 1. The cube on the left side, close to the inlet, 

was subdivided into seven smaller parts to control 

better the quality of the elements around the 

agglomerate of spheres. Six of them are pyramidal-

shaped, connected to an inner cube, surrounding the 

agglomerate of spheres, and positioned in the center of 

the major cube. For the second cube, on the right side 

and close to the outlet, it was unnecessary to divide it 

into smaller parts. Figure 1 also shows a cut of the 

lateral view of the computational domain using the 

agglomerate of five spheres as an example, while 

Figure 2 shows the isometric view of the geometry of 

the three agglomerates. 

Meshes statistics 

Before   running   simulations,   it   is  important   to  
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Figure 1. Example of the lateral view of the interior of the computational domains simulated. 

 

 
Figure 2. From left to right: Isometric view of the particle agglomeration of three, four, and five particles and a scheme of the flow 

direction. 

 

analyze the quality of the mesh by verifying the 

elements according to their shape and criteria for 

several mesh quality parameters. In this study, its 

aspect ratio, orthogonality, and skewness were 

evaluated. To obtain convergence stability easier and 

better accuracy, it is ideal to have elements exclusively 

hexahedral. However, hybrid meshes were generated 

due to the complexity of the agglomerates' geometry. 

These meshes contain elements with shapes referred 

to as tetrahedral, six-node wedge, five-node pyramid, 

and hexahedral. 

To avoid distorting the mean values and standard 

deviations, the values are presented separately 

according to two regions: the inner cube around the 

agglomerate (Figure 1), referred to as the subdomain, 

and the whole computational domain, referred to as the 

total domain. Table 1 shows the values of the minimum, 

maximum, mean, and standard deviation of the three 

parameters for the tested meshes, detailed for the 

subdomain and the total domain. 

The minimum value possible for the aspect ratio 

is 1, where the quality is considered excellent for values 

lower than 20 [28,29]. For both the total domain and 

subdomain, the maximum values obtained were 

above 20. However, their average values are lower 

than 1.2, with standard deviations lower than 0.48%. 

Analyzing the aspect ratio of the three meshes 

presented in Table 2, we find many elements with 

values below 5, which are considered excellent for this 

criterion. 

The orthogonality varies from 0 to 1, where values 

above 0.8 are considered excellent [28,29]. Even 

though some elements present poor quality, the mean 

value for each proposed domain was above 0.94, with 

a standard deviation lower than 0.1%, where elements 

with orthogonality above 0.8 correspond to at least 94% 

of the elements, as seen in Table 2. It occurs due to the 

high quantity of hexahedrons, which tend to have 

higher orthogonality. This effect is also present in 

skewness. Analyzing the skewness, where elements 

have excellent quality for values between 0 to 0.2 and 

good quality for values between 0.2 and 0.4, we 

observe that the mean values do not exceed 0.07, and 

the standard deviations do not exceed 0.12% for any 

mesh. The low value directly results from the high 

quantity of hexahedrons with good and excellent 

quality. 

Pyramidal shapes, such as tetrahedrons and five- 
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Table 1. Mesh quality for the three agglomerates studied. 

Mesh quality parameter 
Subdomain Total domain 

3 spheres 4 spheres 5 spheres 3 spheres 4 spheres 5 spheres 

Aspect ratio 

Minimum 1 1 1 1 1 1 

Maximum 32.12 24.58 299.98 32.12 24.58 299.98 

Mean 1.123 1.186 1.187 1.061 1.069 1.076 

SD (%) 0.403 0.476 0.547 0.284 0.306 0.349 

Orthogonality 

Minimum 0.212 0.152 0.032 0.210 0.152 0.032 

Maximum 1 1 1 1 1 1 

Mean 0.962 0.944 0.944 0.987 0.984 0.982 

SD (%) 0.081 0.093 0.095 0.052 0.056 0.060 

Skewness 

Minimum 0 0 0 0 0 0 

Maximum 0.975 0.993 0.987 0.982 0.997 0.999 

Mean 0.041 0.062 0.063 0.018 0.022 0.024 

SD (%) 0.120 0.142 0.114 0.078 0.088 0.094 

 

Table 2. Percentage of elements of the meshes attending to the criteria of the quality coefficients. 

Region Agglomerate 
Number of  

elements 

Aspect ratio Orthogonality Skewness 

Below 5 Above 0.8  Below 0.4  

(%) (%) (%) 

Subdomain 

3 spheres 1240970 99.99 96.24 96.39 

4 spheres 1064255 99.96 94.25 94.59 

5 spheres 1328015 99.97 94.21 94.41 

Total domain 

3 spheres 5234907 99.99 98.67 98.64 

4 spheres 5001753 99.99 97.89 98.17 

5 spheres 5220320 99.98 97.98 97.87 

 

node pyramids, are expected to have lower 

orthogonality and higher skewness [29]. Table 2 shows 

that the influence of such shapes on the quality of the 

meshes was not significant because of the low number 

of pyramidal elements – representing less than 2.5% of 

the elements of the subdomain and less than 0.5% of 

the total domain for all meshes. 

It is relevant to emphasize the predominance of 

hexahedral elements for both subdomain and total 

domain in all meshes. The agglomerate of three 

spheres presented percentages of hexahedral 

elements above 83% in the subdomain and 93% in the 

total domain. In the meshes of agglomerates of four and 

five spheres, these percentages were above 92% in the 

subdomain and 95% in the total domain. Also, 

analyzing the meshes statistics for three main 

parameters, the elements have good or excellent 

quality, so the meshes are expected to behave with 

convergence stability and obtain accurate results. 

The governing equations 

The time-averaged conservation equations for the 

steady incompressible isothermal turbulent flow in the 

three-dimensional model, neglecting body force, can be 

expressed by the equations of continuity and 

motion [22]. 

The closure equations for the RANS approach 

depend on the turbulence model used. In this study, we 

investigated the effects of five turbulence models. The 

models are classified according to the number of 

transport equations used to close the modeling of the 

problem. The tested models are the one-equation-

based Spalart-Allmaras, the two-equation-based RNG 

k-ε, SST k-ω, the four-equation-based Langtry-Menter, 

and the six-equation Reynolds stress model. The 

modeling of its closure equations and coefficients is 

better detailed in the literature [30—34]. 

Simulation setup 

The fluid properties were set up for an isothermal 

operation condition of 25 °C, obtaining water density 

and viscosity of 998.2 kg/m3 and 1.003 x 10-3 Pa∙s, 

respectively. As a boundary condition, the inlet velocity 

of the water was set as an injection normal to the inlet 

surface. Since the drag experienced by particles 

flowing in a Newtonian fluid can be divided into seven 

main flow regimes according to its Reynolds number, 

we varied the velocities of the flow to obtain Reynolds 

numbers between 1 and 1500 to ensure that we will 

observe  how  the  turbulence  model  interferes  on  the  
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estimation of the drag coefficient in all the regimes, 

from laminar to turbulent wake flow regimes [35,36]. 

The velocities varied from 5 x 10-5 to 0.10501 m/s, as 

presented in Table 3, according to the agglomerate, to 

obtain the range of Reynolds numbers proposed, 

calculated by Eq. (4). 

equ d  
Re




=     (4) 

where ρ, u, μ are the density, relative velocity, and 

viscosity of the fluid, and deq is the diameter of the 

sphere equivalent to the agglomerate, i.e., with the 

same volume. Unsteady simulations were also carried 

out at the higher Reynolds number to compare the 

difference between the drag coefficients. Despite 

presenting the unsteady turbulent wake profile, the 

drag coefficient obtained did not present significant 

deviations, so we chose the steady simulations to 

reduce computational efforts. The boundary conditions 

were set to the no-slip condition for the sphere walls 

and specified shear for the domain walls. 

Table 3. Inlet velocity of the flow for the Reynolds numbers 

tested. 

Reynolds 

(-) 

Velocity (m/s) 

3 spheres 4 spheres 5 spheres 

1 0.000070 0.000064 0.000059 

5 0.000350 0.000318 0.000295 

10 0.000700 0.000636 0.000590 

30 0.002100 0.001907 0.001770 

50 0.003500 0.003178 0.002950 

80 0.005600 0.005085 0.004720 

100 0.007000 0.006356 0.005900 

300 0.021002 0.019069 0.017702 

500 0.035003 0.031781 0.029503 

800 0.056005 0.050849 0.047205 

1000 0.070007 0.063562 0.059006 

1300 0.091009 0.082631 0.076708 

1500 0.105010 0.095343 0.088509 

 

Despite the SIMPLE-based algorithms presenting 

lower computational effort [37], we chose the PISO 

algorithm since it presents greater stability, requiring 

fewer iterations, generating a faster convergence, and, 

consequently, less processing time [38,39]. 

The spatial discretization was set to the least-

squares cell-based method for gradients, PRESTO! 

scheme for pressure and second-order upwind scheme 

for energy, momentum, and turbulence equations to 

solve the problem of underestimation of turbulent 

kinetic energy and its dissipation rate, as suggested in 

previous studies [12,13]. 

Turbulence closure models 

The choice of the turbulence models was based 

on their characteristics and ability to solve specific 

problems presented by the complex geometry of the 

meshes generated. Since one of the focuses in the 

present study stands on analyzing the drag coefficient 

in an agglomerate of particles, predicting the flow in the 

boundary layer is essential. The Spalart-Allmaras 

model, a one-equation-based model, fits in this type of 

flow since it was developed to study the flow in the 

boundary layers of airfoils [28]. Two other models also 

developed to represent this zone are the transition 

models SST k-ω and the Langtry-Menter k-ω [22]. The 

first one is a two-equation-based model that solves the 

equation of the turbulent kinetic energy, k, for the flow 

far from the wall and, for the boundary layer, weights 

the influence of the turbulent kinetic turbulence and the 

specific turbulence dissipation rate, ω, using blending 

functions. The second is based on the k-ω. However, it 

implements two transport equations, one to solve the 

intermittency, γ, and one to solve the transition 

momentum-thickness Reynolds number, 𝑅�̃�𝜃𝑡, to better 

represent profiles with strong adverse pressure 

gradients [32,33,40]. 

We also tested turbulence models developed to 

represent wide ranges of Reynolds numbers. With a 

low computational cost, the k-ε model was developed 

to solve several engineering in a wide range of 

Reynolds numbers [41]. This model has the 

characteristic of modeling the near-wall region and 

solving the transport equation for the outer region of the 

boundary layer. We chose to use the RNG k-ε, an 

improvement of the k-ε developed to solve problems 

where the flow presents a highly swirling profile [31]. 

The Reynolds stress model was another model tested 

in this study, with similar characteristics but more 

robust. The main difference in this seven-equation-

based model that leads to its robustness is the addition 

of six transport equations, one for each independent 

Reynolds stress, to the solution for the dissipation 

equation, ε, and its anisotropic treatment [34]. The 

following items are reserved for modeling the transport 

equations of each turbulence model presented. 

i. Spalart-Allmaras Model 

The Spalart-Allmaras is a one-equation model 

that solves a viscosity-like variable's transport 

equation. 𝜈, also referred to as the Sparlat-Allmaras 

variable. The model is given by Eq. (5): 

j
b

b

j j j j j

u
c

c S c f
t x x x x x d

2

2
1 1

1
 


    

  
 

 
              + = + + + −          

   

     (5) 
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where �̃� is the production of turbulent viscosity, cb1, cb2, 

cw1, fw, and σ are the model's closure coefficients and 

auxiliary relations, better described by Spalart and 

Allmaras [30].  

ii. RNG k-ε Model 

The RNG k-ε model uses the renormalization 

group theory to improve the Standard k-ε model, which 

models the turbulence kinetic energy, k, and the 

turbulence dissipation rate, ε, given by Eqs. (6) and (7), 

respectively, 

( )i t
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i j k j

u kk k
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where 𝑃𝑘 is the production term of the turbulent kinetic 

energy [31]. 

iii. SST k-ω Model 

The SST k-ω model modifies low-Reynolds 

number effects, compressibility, and shear flow 

spreading. The model is based on modeling transport 

equations for turbulence kinetic energy and the specific 

dissipation rate, given by Eqs. (8) and (9), respectively. 
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  (9) 

where 𝐹1 is the blending function, 𝛼, 𝛽, and 𝜎 refer to 

the closure coefficients of the model [32]. 

iv. Langtry-Menter SST k-ω Model 

Modeled similarly to the SST k-ω model presented 

previously, the Langtry-Menter model implements two 

transport equations to solve the intermittency and the 

turbulent transition Reynolds number, given by Eqs. 

(10) and (11), respectively. 
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where 𝑃𝛾1 and 𝐸𝛾1 are the transition sources, 𝑃𝛾2 and 

𝐸𝛾2 are the destruction sources and 𝑃𝜃𝑡 is a source 

term [33]. 

v. Reynolds Stress Model 

The RSM consists of modeling the Reynolds 

stresses, represented by the tensor τ, and the 

turbulence dissipation rate, ε [22]. The exact transport 

equation of the Reynolds stresses, in tensorial notation, 

is given by Eq. (12). 
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where the turbulence production terms 𝑃𝑖𝑗 are given by 
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where P is the fluctuation kinetic energy production and 

νt the turbulent kinematic viscosity. 

The transport equation for turbulence dissipation 

rate, ε, is given by 

t i
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+ = + − −  
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where 𝐾 =
1

2
𝑢𝑖
′𝑢𝑖

′ is the fluctuation of kinetic 

energy [34]. 

Drag coefficient correlation modelling 

For several applications in industry, the drag force 

is the main acting force on a particle in the opposite 

direction of the particle motion. 

Studies generally consider the most influential 

parameters to estimate the drag coefficient, i.e., the 

particle Reynolds number, shape, orientation, and 

particle-to-fluid density ratio. Also, secondary 

parameters, such as secondary motions, turbulence, 

and particle/fluid acceleration, are the focus of studies 

[11,16,17,20,42—45]. 

The present study considered five correlations 

observed in the literature that consider only the main 

parameters, as follows. Four of them consider the 

Reynolds number and shape parameters, such as the 

sphericity, circularity, and flatness of the agglomerate 

[11,16,17,19], while one of them uses the orientation of 

the agglomerate to estimate two different shape 

parameters [18]. 

Haider and Levenspiel model 

The study of Haider and Levenspiel [16] was the 

first to propose that the drag coefficient is a function of 
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the Reynolds number and sphericity for both spherical 

and nonspherical particles. Also, the Reynolds number 

should be calculated using an equivalent diameter, deq, 

corresponding to the diameter of a sphere with the 

same volume of the particle tested. They proposed that 

drag correlations could be written as 

( )B
D

C
C A

D

24
1 Re

Re
1

Re

= + +

+

   (15) 

where A, B, C, and D are parameters given as a 

function of the sphericity Φ and are applicable for         

Re < 2.5∙104 for isometric particles [16], such as the one 

proposed in the present study. 

Ganser model 

The model proposed by Ganser [17] adapts the 

Haider & Levenspiel model, introducing two other 

shape-dependent parameters: Newton's and Stokes' 

parameters, kN and kS, respectively, and is given by 

Eq. (16). 

S N N
D

S

N S

k k k
C

k

k k

0.6567

0.4305
24 1 0.1118 Re

3305Re
1

Re /

   
 = + +  
     + 

 (16) 

where kN and kS are functions of the sphericity, Φ, and 

the model is applicable for Re < 3∙105 if kN and kS are 

known. The literature presents several proposals to 

estimate these parameters, such as the Tran-Cong et 

al. [11], Hölzer and Sommerfeld [18], and Bagheri and 

Bonadonna [19], tested in this study and presented in 

the following sections. 

Tran-Cong et al. model 

The model proposed by Tran-Cong et al. [11] 

considers that the drag coefficient is a function not only 

of the Reynolds number but also of the ratio between 

the surface-equivalent-sphere diameter, dA, and the 

volume-equivalent-sphere diameter, deq, referred to as 

flatness, and the circularity, c. The correlation is given 

by Eq. (17). 
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for the ranges of variables  

0.15 < Re < 1500,  

0.80 < 
𝑑𝐴

𝑑𝑒𝑞
⁄ < 1.50 and 0.4 < c < 1.0 [11]. 

Hölzer & Sommerfeld model 

The drag coefficient can also be modeled using 

the theoretical and experimental correlation for drag in 

the Stokes region [15], as proposed by Hölzer and 

Sommerfeld [18]. Their model has its base on the 

proposal of Leith [15] and Ganser [17] for CD in the 

Stokes region, including shape and orientation-

dependent terms and the Reynolds number of the 

particle. The correlation is given by Eq. (18). 

( )
DC

0.2
0.4 log

3/4

8 1 16 1 3 1 1
0.421

Re Re Re



  

−

⊥

= + + +  (18) 

where the sphericity, Φ, represents the ratio between 

the surface area of the volume-equivalent-sphere and 

that of the particle, the crosswise sphericity, 𝜙⊥, is the 

ratio between the cross-sectional area of the volume-

equivalent-sphere and the projected cross-sectional 

area of the particle and the lengthwise sphericity, 𝜙∥, is 

the ratio between the cross-sectional area of the 

volume-equivalent-sphere and the difference between 

half the surface area and the mean projected 

longitudinal cross-sectional area of the particle. The 

correlation is applicable over the entire range of 

Reynolds numbers up to the critical Reynolds 

number [18]. 

Bagheri & Bonadonna model 

However, this model is also derived from the 

Ganser model, which accounts for more accurate and 

easier shape descriptors rather than sphericity [19]. 

Here, the form factors, FS and FN, are functions of the 

volume-equivalent-sphere, and three size parameters: 

the longest, the intermediate, and the shortest lengths 

of the particle, L, I, and S, respectively. The correlation 

is given by Eq. (19): 

S N N
D

S

N S

k k k
C

k

k k

2/3

0.46
24 1 0.125 Re

3305Re
1

Re /

   
 = + +  
     + 

 (19) 

where the drag corrections, kN and kS, are functions of 

the form factors FN and FS. 

 
 

RESULTS AND DISCUSSION 

Grid refinement near the agglomerate walls 

To analyze if the turbulence models are 

applicable, it is important to evaluate the y+ since the 

flow near the walls is a relevant region in the study of 

the drag coefficient. Turbulence models that do not use 

wall functions need better refinement near walls since 

their y+ shall be lower than 1 [40], whereas, in 

turbulence models that use wall function, the value 

depends   on   the   type   of   function   treatment.  The  
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Enhanced-Wall functions should be used for values as 

low as 3 [28]. Since the value of y+ increases as the 

velocity of the flow increases, it is necessary to analyze 

only the highest velocity, i.e., for Reynolds number of 

1500. 

Simulations presented good results. In general, 

the y+ was below 1 for over 99.5% of the elements in 

the walls of the agglomerates. The RNG k-ε simulations 

obtained the worst values, where the percentage of 

elements below 1 varied between 97 and 98%. The 

values confirm that the meshes are fine enough near 

the agglomerates and it is reasonable to use the 

Enhanced-Wall functions for the RSM and RNG k-ε 

turbulence models and fine enough to use k-ω-based 

models and the Spalart-Allmaras model. 

However, wall functions are approximations for 

zones near the walls, leading the RSM and RNG k-ε 

turbulence models to lower efficiency in representing 

the flow surrounding the agglomerate and models 

without wall functions. Also, RSM and RNG k-ε 

turbulence models are expected to correctly represent 

the flow far from the agglomerates, like the models 

without wall functions. 

Statistical analysis of results – Comparison between 

simulations and empirical correlations 

In Figure 6, we observe three models that present 

promising curves where simulations are correlated: the 

Haider and Levenspiel model, the Bagheri and 

Bonadonna model, and the Tran-Cong model. 

However, it is important to statistically confirm which 

model better fits the results obtained in the simulation. 

The criterion used was the method known as the root-

mean-square error (RMSE), calculated by Eq. (3), and 

which values are presented in Table 4. 

Table 4. Root-mean-square error of the turbulence models compared to drag coefficient models. 

Agglomerate Drag coefficient model 
Turbulence model 

RSM RNG k-ε SST k-ω 
Langtry-
Menter 

Spalart-
Allmaras 

3 spheres 

Haider & Levenspiel 1.8179 1.5133 1.5568 1.5393 1.2398 

Ganser 2.6035 2.3056 2.3283 2.3185 2.0013 

Tran-Cong et al. 2.4351 2.1501 2.1497 2.1484 1.8192 

Hölzer & Sommerfeld 2.3887 2.0893 2.1123 2.1031 1.7805 

Bagheri & Bonadonna 2.4090 2.1157 2.1537 2.1377 1.8560 

4 spheres 

Haider & Levenspiel 0.7242 0.6639 0.7703 0.9211 0.7223 

Ganser 1.0941 1.0637 1.1173 1.3804 1.0384 

Tran-Cong et al. 0.3172 0.3377 0.3112 0.2489 0.3697 

Hölzer & Sommerfeld 0.8041 0.7835 0.8214 1.1276 0.7378 

Bagheri & Bonadonna 0.5447 0.5376 0.5565 0.3474 0.6151 

5 spheres 

Haider & Levenspiel 1.6936 1.6389 1.7408 1.7140 1.5265 

Ganser 2.4442 2.3938 2.4838 2.4670 2.2444 

Tran-Cong et al. 1.0611 1.0464 1.0803 1.0777 0.8359 

Hölzer & Sommerfeld 1.9699 1.9435 1.9937 1.9836 1.7369 

Bagheri & Bonadonna 1.0511 0.9939 1.1009 1.0805 0.9061 

 

Here, we observe that, in most cases, the Tran-

Cong model presents lower RMSE for the 

agglomerates of four and five spheres. An exception is 

observed for the agglomerate of three spheres, where 

the Haider and Levenspiel model presented the lower 

RMSE for all turbulence models tested. 

Still analyzing Figure 6, lower deviations of the 

Haider and Levenspiel model for Reynolds numbers 

between 1 and 100 were observed. The drag coefficient 

presents higher values for this range, which interferes 

the most in the RMSE, compared to the drag values for 

Reynolds above 100. This behavior generates the 

distortion that leads to statistical inferring that the 

Haider and Levenspiel model can better represent the 

drag coefficient in the agglomerate of 3 spheres. Now, 

considering the range between 1 and 1500, the plot 

shows that the Tran-Cong model presents the best 

agreement with simulation data, while the Haider and 

Levenspiel present good agreement only for lower 

Reynolds numbers. 

Analysis of the turbulence models 

To understand the influence of the turbulence 

models on the drag coefficient prediction, we first 

observed  the  behavior  of  the  streamlines  of  the  flow 
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surrounding the agglomerate to determine which one 

better represents three relevant regions of the flow: the 

boundary layer, the flow far from the walls of the particle 

and the wake region in the rear of the agglomerates. To 

infer if the simulation results are consistent, we 

compared with the literature correlations to observe if 

simulations follow a trend. At last, we compared the 

results of the turbulence models with the correlation 

that better represented the trend of the simulations to 

find which turbulence model presents lower deviations 

from the predicted by the correlation. 

Before analyzing the drag results, it is relevant to 

observe if the flow profile corresponds to the 

expectations from the literature. Militzer et al. [46] 

stated that a particle's aspect ratio substantially 

interferes with where the separation begins, and the 

size of the recirculation wake. According to them, 

particles with similar aspect ratios present similar flow 

profiles. The flow profile past a sphere is well-known, 

and since the particle agglomerates are composed of 

spheres, the flow profile is expected to behave 

similarly [47]. To compare the velocity profiles, we 

chose the inlet velocity to reach Re = 1000, where the 

flow is turbulent, and the vortex street in the rear of the 

agglomerate is considered fully turbulent [19,35,47]. 

Figures 3 to 5 present the velocity streamlines for 

agglomerates of three, four, and five particles, 

respectively, according to the turbulence models. 

Comparing the models with wall functions, due to its 

anisotropic treatment, the RSM is more capable of 

representing the velocity in the rear of the particle 

agglomerates in the wake region than the RNG k-ε. 

However, both do not represent the profile as well as 

the turbulence models without wall functions. Such 

behavior confirms the expectation since they model the 

boundary layer zone to represent it instead of solving 

the transport equations around the particle. 

 
Figure 3. From left to right and top to bottom: velocity streamlines for Re = 1000 in the agglomerate of three particles using the RNG k-ε, 

RSM, Langtry-Menter, Spalart-Allmaras, and SST k-ω turbulence models. 

 

The velocity streamlines obtained by the SST k-ω 

model, seen in Figures 3e, 4e, and 5e, better represent 

the flow profile near the agglomerate walls, i.e., the 

viscous effects ahead of the particle becoming less 

important than the inertial effects [19,48]. Such 

behavior leads to a separation of the flow from the 

particle at the so-called separation location, and the 

fluid's inertia is large enough that the fluid cannot follow 

the path around the rear of the particle. This effect 

results in a separation bubble after the particle [47] in a 

region where the boundary layer thickens rapidly in 

rising pressure, generating a backflow. 
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Figure 4. From left to right and top to bottom: velocity streamlines for Re = 1000 in the agglomerate of four particles using the RNG k-ε, 

RSM, Langtry-Menter, Spalart-Allmaras, and SST k-ω turbulence models.. 

 
Figure 5. From left to right and top to bottom: velocity streamlines for Re = 1000 in the agglomerate of five particles using the RNG k-ε, 

RSM, Langtry-Menter, Spalart-Allmaras, and SST k-ω turbulence models. 
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In the moderate Reynolds number range, e.g., the 

tested in this study, as the Reynolds number increases, 

the backflow profile increases in the rear of the particle 

to regions far from the particle. The SST k-ω model 

better represented the recirculating profile in the rear of 

the agglomerates for all the particle agglomerates. 

However, the separation is unclear for larger Reynolds 

numbers by order of Re = 105 since it occurs together 

with the wake region [48]. Consequently, the results of 

the drag coefficient estimated by simulations using 

such a model tend to obtain, in general, lower 

deviations from the empirical model of drag coefficient, 

as presented in Figure 7. 

To find a correlation that better represents the 

trends of the drag coefficient estimated by simulations, 

we compared the results of the simulations using the 

Spalart-Allmaras and the SST k-ω turbulence models 

with five drag coefficient correlations present in the 

literature [11,16—19]. The comparisons are presented 

in Figure 6. 

 
Figure 6. Comparison between predictions of the experimental drag models tested and the simulations data using different turbulence 

models for agglomerates: a) three particles, b) four particles, and c) five particles. 

 

In a first analysis, one can infer that the 

simulations correlate better to the Tran-Cong et al. [11] 

model for the three agglomerates along the range of 

Reynolds numbers tested. An exception occurs in the 

agglomerate of three particles, as seen in Figure 6a, 

where the Haider and Levenspiel [16] model has a 

slightly better representation for Reynolds numbers 

lower than 10 and a significantly better representation 

for Reynolds numbers between 10 and 100. Since the 

range of Reynolds numbers is wide, the logarithm scale 

 

   

(a)                                                                                      (b)  

 

     (c) 
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distorts the perception of the deviations. 

To reduce the distortion, the relative deviations 

along the Reynolds number were plotted for the Tran-

Cong et al. [11] model to analyze if the model 

represents the simulations and find the turbulence 

model that presents lower deviations from the 

correlation. Analyzing the plot of the deviations for the 

agglomerate of three particles (Figure 7a), the range 

from 1 to 100 is not so distant from the error of 12% 

observed in the literature [11]. Also, considering the 

wide range of Reynolds numbers to which the models 

are applicable, deviations between ±25% are 

considered low. 

For lower velocities, the flow still follows the 

curvature of the particle and, consequently, the path 

around the rear of the particle, for all turbulence 

models, presented a similar flow profile, leading to 

similar values for the drag coefficient. As the velocity 

increases, the edge of the boundary layer gets far from 

the particle; the boundary layer separation location gets 

far from the stagnation point, and the turbulence 

models that use wall functions present difficulties in 

representing the backflow and wake regions after the 

particles. Consequently, the RNG k-ε and RSM do not 

follow the trends observed by the other three turbulence 

models. The RSM is closer to the trends observed due 

to its robustness, compared to the RNG k-ε, but in 

Figures 3 to 5 we observe that the RSM also does not 

represent so well the velocity profile expected. 

Figure 7 shows the deviation of the drag 

coefficient obtained by simulations compared to the 

correlation of Tran-Cong et al. [11] for the agglomerates 

in the applicable range of the Reynolds number of the 

model. The figure shows a trend for all agglomerates, 

where the deviation slightly and negatively increases as 

the Reynolds number increases in the range of low 

Reynolds numbers, from 1 to 100, and for the moderate 

Reynolds numbers range, from 100 to 1500, the 

deviation slope is positive and higher. 

For Reynolds numbers between 1 and 100, 

turbulence models presented similar deviations for 

each of the three agglomerates studied since it 

corresponds to the laminar regime presenting 

unseparated flow. The variation between the models 

results from the different values of the closure 

constants present in each turbulence model. The 

deviations begin to diverge for Re ≥ 300, where the flow 

is transitioning to the turbulence region, and the 

vortices are becoming present. Figure 7 shows that the 

values obtained are lower than the predicted by 

equations, by the magnitude of -25%, -10%, and -18% 

for the agglomerates of three, four, and five particles, 

respectively. 

As the velocity increases, the gradient of the 

deviations is positive. However, the slope of the curves 

for Spalart-Allmaras and SST k-ω models are 

smoother, and for Reynolds numbers above 1000, the 

deviations for the SST k-ω present a trend to converge 

to a value between ± 5%, according to the agglomerate 

studied. The increase of kinetic turbulence explains so 

turbulence models that better capture effects in the 

boundary and outer layers can better estimate the drag 

force acting in the agglomerate. The streamlines 

presented in Figures 3 to 5 show that the SST k-ω better 

represents these effects, followed by the Spalart-

Allmaras model, confirming the ability of this model to 

estimate the drag coefficient in particle agglomerates. 

For Reynolds numbers between 10 and 100, the 

deviations are constant or close to constant – in the 

case of the agglomerate of four particles. It corresponds 

to the range where the von Kármán vortex street starts 

to appear in a laminar flow, depending on the body's 

shape and the fluid's kinematic viscosity. The 

deviations varied from -13 to -28% in the agglomerate 

of three particles, -6 to -14% in the agglomerate of four 

particles, and -13 to -20% in the agglomerate of five 

particles. However, simulations with Reynolds numbers 

below 10 have drag coefficients closer to the estimated 

correlation. 

The symmetry of the agglomerate is an important 

variable to consider in the analysis. In numerical 

simulations, symmetric geometries are easier to 

generate meshes with good refinement quality in the 

boundary layer separation region. It leads to better 

results and reduces errors of pressure and velocity 

fields, mainly near walls, where the drag and lift are 

computed. The capacity to predict the flow profile and 

the adverse pressure gradient is correlated with the 

geometry since the interference of the effect between 

the spheres of each agglomerate of particles is reduced 

as the symmetry of the agglomerate increases. 

Physically, it means that symmetric geometries tend to 

generate symmetric streamlines, which are easier to be 

calculated by turbulence models. Such behavior is well 

presented in Figure 7, where the agglomerate of four 

particles has lower deviations since its symmetry is 

closer to a single sphere – the most symmetrical shape 

for spheric particle agglomerates – followed by the 

agglomerate of five and three particles. 

Still analyzing the geometry of the agglomerates, 

it is possible to see that they generate curvature in the 

streamlines as we increase the velocity, which directly 

affects the turbulence and, consequently, the flow 

profile. The curvature effect can highly decrease the 

Reynolds stress normal to the wall as the ratio between 

the boundary layer thickness and the radius increases. 

Such a decrease reaches up to 50% for a ratio of 

0.03 [49]. 
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Figure 7. From left to right and top to bottom: deviations of simulated data from the Tran-Cong model for the agglomerate of three, four, 

and five particles. 

 

The simulations confirmed the expectations of better 

results when the curvature effects are considered using 

the Spalart-Allmaras and both SST k-ω-based models 

[50]. 

Since the geometry in the agglomerate of four 

particles is closer to a single sphere, the deviations are 

lower for the turbulence models that do not use wall 

functions. Turbulence models such as the RSM and 

RNG k-ε are accurate in computing the field far from the 

agglomerate; however, the near-wall regions and 

boundary layers are not correctly presented, with 

difficulties in representing the adverse pressure 

gradient of the agglomerate in a greater area, lacking 

the quality to compute the drag coefficient, increasing 

the deviation. It is related to the fact that the wall-

functions effects are more influential in the turbulence 

model than the curvature effects present in a sphere, 

so the pressure and velocity fields are not well 

represented near the walls as in the other turbulence 

models. 

The results of this study demonstrate that the 

utilization of the steady formulation approach yields 

accurate estimations of the drag coefficient. 

Furthermore, the turbulence model plays a crucial role 

in effectively modeling the problem, not only for 

estimating the drag coefficient but also for accurately 

predicting the flow profile in regions characterized by 

separation and recirculating wakes, particularly in flows 

with higher Reynolds numbers. The implementation of 

RANS turbulence models that calculate the flow field 

near the particles instead of relying on wall-function 

modeling exhibited robustness in representing the 

presented problem. Moreover, these models agreed 

more closely with experimental correlations for drag 

estimation in particle agglomerates. 

The simplifications proposed in this study offer a 

significant advantage, primarily through the reduction of 

computational time required to obtain results. 

Consequently, this reduction allows for more 

simulations to be conducted, facilitating a more detailed 
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presentation of the drag coefficient curve and enabling 

the proposal of new correlations. By incorporating 

these findings into future research, it is possible to 

advance the understanding of drag coefficient 

estimation and develop improved correlations for 

industrial-scale problems. 

 
 
CONCLUSION 

 
The present study carried out steady simulations 

of three irregularly-shaped particle agglomerates 

composed of spherical particles surrounded by water. 

The drag coefficient at different inlet conditions was 

obtained for five different turbulence models and 

compared with five correlations in the literature to 

predict the drag coefficient in agglomerates to 

understand which numerical setup better represents 

the flow. The proposed methodology presented a good 

agreement with experimental correlations of drag 

coefficient estimation, which is useful for reducing the 

time and computational efforts required to numerically 

obtain the drag acting in particle agglomerates and 

robustness to estimate the drag coefficient in higher 

Reynolds numbers. The main observations were:  

Steady RANS turbulence models showed good 

agreement with the literature to estimate the drag 

coefficient on particle agglomerates, without the 

drawback of high computational cost seen in unsteady 

simulations, such as URANS, LES, DNS, or LBM. 

The turbulence closure equations present a lower 

influence in the evaluation of flow fields for                           

1 ≤ Re ≤ 100, so the drag coefficients estimated for 

each turbulence model are very similar. 

The flow profile is better represented using 

turbulence models with no wall functions. Spalart-

Allmaras and SST k-ω models could represent the flow 

near the particle agglomerates and far from its walls; 

however, the second one was more robust. 

Steady formulation with the SST k-ω turbulence 

model can represent the flow for a wide range of 

Reynolds numbers with less computational effort. 

Despite presenting the best agreement with Tran-

Cong et al.[11] model, the numerical results presented 

relative deviations by a magnitude of -20%, mainly for 

lower Reynolds numbers, representing a good 

agreement since the average error of the empirical 

correlation is 10%. 

Reduced computational costs make it possible to 

obtain more data so that further studies can focus on 

elaborating new accurate correlations to be scaled up 

for industry-scale problems. 

The proposed numerical methodology was useful 

for initial tests and experimental validation. 

 

 

NOMENCLATURE 
 
A, B, C, D Parameters of the Haider and Levenspiel drag model 

AP Projected area 

C Circularity 

CD Drag coefficient 

𝐶𝐷𝑐𝑜𝑟𝑟 Drag coefficient estimated by correlations 

𝐶𝐷𝑠𝑖𝑚 Drag coefficient estimated by simulations 

dA Surface-equivalent-sphere diameter 

deq Volume-equivalent-sphere diameter 

FD Drag force 

K Fluctuation kinetic energy 

K Turbulence kinetic energy 

kN  Newton’s parameter 

kS  Stokes’ parameter 

N Total data in the sample studied 

Pk Production of turbulent kinetic energy 

Re Reynolds number 

𝑅𝑒𝜃𝑡 Transition momentum thickness Reynolds number 

T Time  

uf Fluid velocity 

up Particle velocity 

𝑥𝑖 Value of the ith data estimated by correlations 

xi Value of the ith data obtained by simulation 

𝛾 Intermittency  

𝛿 Percent deviation 

𝜀 Turbulence dissipation rate 

𝜈 Kinematic viscosity 

𝜈𝑡 Turbulent kinematic viscosity 

𝜈 Spalart-Allmaras kinematic viscosity 

𝜌 Density 

𝜏𝑖𝑗 Specific Reynolds stress tensor 

𝜙 Sphericity 

𝜙⊥ Crosswise sphericity 

𝜙∥ Lengthwise sphericity 

𝜔 Specific turbulence dissipation 
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NAUČNI RAD 

NUMERIČKO ISTRAŽIVANJE TURBULENCIJE 
ODREĐIVANJEM KOEFICIJENTA OTPORA ZA 
AGLOMERATE ČESTICA 

 
Numeričke simulacije strujanja oko aglomerata čestica su sprovedene korišćenjem 

računarske dinamike fluida da bi se ocenila sposobnost pet modela turbulencije RANS 

da procene koeficijent otpora za aglomerate čestica. Simulacije su sprovedene u 

stacionarnim uslovima za Rejnoldsove brojeve između 1 i 1500. Strujnice su pokazale 

da simetrični aglomerati imaju profil brzine sličan profilu jedne sfere. Rezultati su pokazali 

da i Spalart-Allmaras i SST k-ω modeli turbulencije mogu predstaviti profil protoka u 

regionima blizu i daleko od zidova aglomerata i mrtve zone iza aglomerata. RNG k-ε 

model loše predviđa profil brzine i koeficijent otpora. Koeficijent otpora se bolje 

predstavlja modelom Tran-Kong, koji pokazuje da su se odstupanja od predviđanja 

koeficijenta otpora za aglomeratima česticasmanjivala kako se povećava gustina 

pakovanja aglomerata. Upotreba stabilnih RANS simulacija je izvodljiva i efikasna 

metoda predviđanja, uz niske računarske troškove. Za prelazne i turbulentne režime 

strujanja, rezultati su pokazali dobru saglasnost, sa odstupanjima između -15% i 13%, 

dok su za niže Rejnoldsove brojeve odstupanja varirala između -25% i 5%. 

Ključne reči: čvrste materije, aglomerati čestica, turbulencija, koeficijent otpora, 
računarska dinamika fluida. 
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