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Article Highlights  

• The drying temperature has a significant positive correlation on drying kinetics than 

air velocity 

• ANN modeling with activation function TANSIGMOID shows the best prediction of 
drying kinetics 

• ANN modeling shows exceptionally better prediction accuracy than mathematical 

modeling 

 
Abstract  

The study of drying kinetics and characteristics of agricultural products is 

essential for drying time estimation, designing dryers, and optimizing the 

drying process. Moisture diffusivity under different drying conditions is 

crucial to process and equipment design. The drying kinetics of paddy using 

a cabinet tray dryer was modeled using an Artificial Neural Network (ANN) 

technique. For predicting moisture ratio and drying rate, the Levenberg-

Marquardt (LM) training algorithm with TANSIGMOID and TANSIGMOID 

hidden layer activation function provided superior results. A comparative 

evaluation of the predicting abilities of ANN and 12 different mathematical 

drying models was also carried out. The Midilli model was adequate for 

fitting the experimental data with an R2 comparable to that of the ANN. 

However, the RMSE observed for ANN (0.0360) was significantly lower than 

that of the Midilli model (0.1673 to 0.712).  Effective moisture diffusivity 

increased with an increase in temperature from 15.05 10-9 m2/s to               

28.5 10-9 m2/s. The activation energy for drying paddy grains varied between 

6.8 kJ/mol to 7.3 kJ/mol, which showed a moderate energy requirement for 

moisture diffusion. 

Keywords: cabinet tray dryer, equilibrium moisture content, 
mathematical modeling, ANN modeling, effective diffusivity, activation 
energy. 

 
 

Paddy (Oryza Sativa L.) is a staple food in most 

countries. It is regarded as one of the world's most 

essential nutritious staple food crops among cereals 

due to its use as human food and animal feed [1]. 

Drying is one of the earliest preservation procedures 

used to reduce the moisture content of biological mate- 
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rials to a level that inhibits microbial development and 

reduces the rate of deteriorative chemical reactions. 

Besides improving shelf life, drying allows for the 

development of a wide range of value-added goods 

from agricultural food [2]. The growing global demand 

for high-quality dried paddy rice has prompted the 

investigation of viable preservation solutions [3]. 

Cabinet tray drying is a versatile method because of its 

ease of operation. It is a ubiquitous drying technique. It 

retains the quality and nutritional content of dried 

material compared to sun drying, infrared drying, 

freeze-drying, fluidized bed drying, and dielectric drying 

[4]. The paddy will be spread out on the trays, with a 

heating medium (hot air) passing through. The drying 

process can be efficient by ensuring uniform airflow 

distribution across the trays.  Besides  many  matematical 
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models, artificial neural networks (ANNs) are a 

sophisticated computational tool for modeling 

complicated interactions between input and output 

parameters [5]. ANN analysis can produce more 

realistic and accurate forecasts [6]. Some of the notable 

pieces of literature are illustrated below (Table 1). 

Table 1. Existing literature report. 

Ref. Year Methodologies Inferences 

[5] 2016 Statistical analysis ─ The drying temperature and tempering duration effects were investigated on drying kinetics 

and moisture diffusivity. The results showed that adding a tempering stage considerably 

impacted drying performance and effective moisture diffusivity. 

─ Several thin layer drying models were fitted to experimental data of each drying stage, namely 

pre-tempering and post-tempering, and the models' appropriateness was assessed using 

statistical analysis. The Midilli and Tow-Term models were determined to be the most suitable 

for the first and second drying stages. 

[6] 2016 ANN modeling ─ Using six distinct models, thin-layer drying kinetic analysis of paddy dried under low-

temperature conditions (20°C—40°C) and constant air velocity of 1.41 m/s was performed using 

a drying chamber. The Midilli model was found to be the best fit for describing the drying 

behavior of this species of paddy. 

─ The drying constant for paddy drying increased with the drying temperature at low ambient 

temperatures (20°C—40°C). 

[7] 2017 Third-order 

regression 

modeling 

─ The drying kinetics of high moisture paddy at 25% (wet basis) in a cylindrical drying bin were 

investigated about process variables such as inlet air temperature, rate of airflow, and bed 

depth. 

─ The drying rate and moisture ratio increased with drying temperature and airflow rate. 

[8] 2017 Mathematical and 

ANN modeling 

─ To estimate the drying curves of rough rice, a comparison was made between mathematical 

thin-layer models and artificial neural networks. 

─ The kinetics of the thin layers of grains were investigated when the drying bed was separated 

into four thin layers (each 5 cm in height). According to the least RMSE and chi-square values, 

the Midilli model was the best for describing drying curves among the nine mathematical 

models employed for the prediction. 

[9] 2018 Thermogravimetric 

analysis 

─ The thermogravimetric analyzer was used to investigate the isothermal drying kinetics of paddy 

with three initial dry basis moisture contents of 17.18, 21.05, and 30.12 percent. Under the 

drying temperature of 50 °C, the final moisture content of the three samples increased from 

4.61 to 7.61 percent, with a rise in IMC from 17.18 to 30.12 percent.  

─ The model proposed by Midilli is the most appropriate because the R2 for the three samples 

was higher than the R2 for the other four models. 

[10] 2019 Regression 

analysis 

─ Paddy's drying kinetics and moisture diffusivity are investigated in a fluidized bed dryer. For 

drying paddy, different values of drying air temperatures (T) of 45 °C, 50 °C, and 55 °C, drying 

air velocities (V) of 2 m/s, 2.5 m/s, and 3 m/s, and paddy inventory of 2 kg and 3 kg are utilized.  

─ The linear regression analysis obtains a regression equation correlating effective moisture 

diffusivity across all drying process parameters. 

[11] 2020 ANN modeling ─ To forecast M.R., the ANN approach was used. The impact of different drying processes on 

parboiled paddy's thermodynamic and qualitative parameters was investigated. Five 

mathematical approaches were used to predict the moisture ratio of parboiled rice. The results 

showed that as the intensity of the radiation, the temperature of the air, or the microwave power 

increased, the product surface temperature and moisture loss increased. 

[12] 2021 Nonlinear 

regression 

analysis 

─ The drying kinetics model of paddy at a certain drying period was investigated in a swirling 

fluidized bed (SFB) drier. The drying was carried out at capacities of 1 kg, 2 kg, and 3 kg, with 

temperatures of 55 °C, a 45-minute drying duration, and an initial moisture content of 31.23 ± 

0.26% percent (d.b.). A linear-plus-exponential model best describes the change in M.R. of 

paddy with time in the capacity range of 1 kg to 3 kg among the six drying kinetics models. 

[13] 2021 ANN and adaptive 

neuro-fuzzy 

modeling 

─ The impact of hot air-drying kinetics on milled rice's quality and microstructural features during 

the instant controlled pressure drop (ICPD) assisted parboiling process was examined. In 

addition, the thin layer drying dynamics were studied using mathematical modeling. The Midilli 

model, which had the highest R2 and the lowest RMSE and SSE values of the five 

mathematical models, predicted the best drying behavior of ICPD-treated parboiled rice grains. 

 

However, considering the above inferences, the 

authors could not inspect any available literature 

investigating cabinet tray drying kinetics for paddy. 

Paddy drying kinetics prediction needs a more accurate 

and reliable method to attain better accuracy using 

evaluation metrics. Based on these needs, this work 

focused on the following objectives: 

To assess the drying kinetics of paddy at different 

drying conditions; to estimate the equilibrium moisture 

content using the static gravimetric technique; to 

demonstrate ANN modeling using different activation 

functions such as TANSIGMOID, LOGSIGMOID, and 

PURELIN for paddy drying; To analyze the ANN 

modeling techniques using evaluation metrics such as 
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R2, RMSE, and mean absolute error (MAE); To select 

and recommend the most accurate prediction 

technique to evaluate the drying kinetics of paddy. 

 
MATERIAL AND METHODS 

The paddy variety (rice CO 51) was collected from 

an agricultural field near Sriperumbudur, Tamilnadu, 

India. A paddy of fixed mass (100 g) was steeped in a 

constant temperature water bath for 3 hours at 45 °C, 

The excess water was drained, and surface moisture 

was removed by spreading it on the floor or using a 

muslin cloth. It has typically resulted in a moisture 

content of 26% on a dry basis. The conventional oven 

technique assessed the sample's initial moisture 

content (IMC). The convective cabinet tray dryer (Fig.1) 

was used for the study with only one tray in position, 

and it had a provision to control the temperature. The 

dimensions of the drying chamber were                            

250 mm x 250 mm x 300 mm with an air circulating fan 

(2HP centrifugal air blower). The air velocity was 

monitored and measured using a rotameter. A digital 

weighing balance with an accuracy of ±0.01 g was used 

to measure the weight loss. Paddy samples of 

approximately 100 g were dehydrated in a convective 

cabinet tray dryer at different drying temperatures of   

40 °C, 50 °C, 60 °C, and 70 °C and air velocities of           

1 m/s, 1.5 m/s, and 2 m/s. A thermostat was used to 

manage the tray dryer drying temperature. Moisture 

loss was measured every 5 minutes until equilibrium 

was established. 

Figure 1. Schematic representation of cabinet tray dryer. 

Radius of paddy 

The volume displacement method using kerosene 

as the fluid was used to measure the paddy radius (r) 

by Eq. (1). 

Change in volume: ( ) 34

3
f iV V N r− =    (1) 

where N is number of dried paddy kernels, Vi is the 

initial volume of kerosene and Vf is the final volume of 

the kerosene. 

radius of the paddy: ( )
3

3

4

f iV V
r

N

 −
=   (2) 

This method could only determine the 

approximate value of radius because the volume of 

individual paddy has been approximated to the volume 

of a perfect sphere. Therefore, the radius of the paddy 

grain is calculated to be 1.683 mm. 

Equilibrium moisture content - relative humidity (EMC-
RH) 

The static gravimetric technique was utilized to 

determine the paddy's equilibrium moisture content 

(EMC) [14]. In a confined chamber, saturated solutions 

of different inorganic salts were used for sorption 

investigations to achieve regulated humidities ranging 

from 30% to 85% (5 levels), such as concentrated 

magnesium chloride, magnesium nitrate, sodium 

nitrate, sodium chloride, and potassium chloride. The 

sorption process was investigated at a temperature of 

28 °C for paddy. For each of these trials, a 10 g sample 

of paddy was placed individually in desiccators in 

porous paper bags. The loss of moisture per unit weight 

of bone-dry material was used to calculate moisture 

content on a dry basis (d.b.). The increase or loss of 

weight of samples in each desiccator was tracked 

regularly until two successive measurements were 

consistent. Due to the nature of the samples, this took 

36—40 days. For every sample, four homologs were 

preserved, and the average EMC values were taken. 

The moisture content of a paddy sample was tested by 

drying it for 24 hours at 105 °C. The samples were 

measured on a precision electronic balance with a least 

count of ±0.001 g. Eq. (3) is an appropriate model to 

estimate the EMC for paddy in the temperature range 

of 40 °C —70 °C and relative humidity (RH) of 30%—85% 

[15]: 

( ) ( ) ( )ln 1 eRH T M


− − =     (3) 

where RH is the relative humidity, Me is the equilibrium 

moisture content (d.b.) and T is the temperature (°C). 

Determination of effective diffusivity 

The effective diffusivity of spherical particles was 

evaluated using Eq. (4). 

2 2

2 2 2
1

6 1
exp eff

n

n D t
MR

n r







=

 −
=  

 
    (4) 

where Deff is the effective diffusivity (m2/s), r is the 

radius of the grain (m), t  is the time of drying in seconds 

For long drying times, Eq. (4) can be further simplified 

to the first term of the series [16]. Thus Eq. (4) can be 

approximated in the logarithmic form to Eq. (5). 
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2

2 2

6  
ln ln

D t
MR

r




= −     (5) 

The most typical method for determining effective 

diffusivities is to plot experimental drying data in terms 

of ln (MR) vs. time. From Eq. (5), a plot of ln(MR) vs. t 

gives a straight line with a slope of 2 2/D r . 

Effect of temperature on diffusivity 

The temperature effect on diffusivity can be 

represented by the Arrhenius type of relationship 

(Eq.6). 

The activation energy were calculated using 

relation is given by: 

0 exp aE
D D

RT

 
=  

 

    (6) 

where D0 is a constant, Ea is the activation energy 

required for moisture diffusion (kJ/mol), R is the 

Universal gas constant = 8.3144 J/mol K. D was 

measured at different temperatures to evaluate the 

constant D0 and (Ea/R). Therefore, the above equation 

can be linearized as Eq.(7): 

0ln ln /aD D E RT= −     (7) 

MODELING PROCESS 

 
Mathematical modeling 

The experimental moisture ratio (MR) data were 

fitted with twelve mathematical drying models (Table 1). 

First, the curve fitting tool in MATLAB version.2021 was 

used to determine the empirical constants and model 

performance metrics such as R2, RMSE, and reduced 

chi-square (χ2) in each model using regression 

analysis. Then, Eq. (1) was used to calculate the MR 

values. 

( ) ( )0/e eMR M M M M= − −    (8) 

where MR is the ratio of moisture, M is the moisture 

content at any time, M0 is the initial moisture content, 

and Me is the equilibrium moisture content. The best-fit 

coefficients of empirical models were evaluated by 

minimizing the mean square error between the 

measured data and predicted data by thin-layer drying 

models because it captured error between the actual 

and predicted data. The fmincon (minimum of inhibited 

nonlinear multivariable function) was used to curtail the 

RMSE. The highest R2, the χ2 and least RMSE were 

implied as error functions for the competence of the fit 

[17,18]. The statistical analysis parameters are 

represented as follows: 

( )

( )

2

exp, ,
2 1

2
'

exp, ,

1

1

n

i pre i
i
n

i pre i
i

MR MR

R

MR MR

=

=

−

= −

−





   (9) 

( )
2

exp, ,
2 1

n

i pre i
i

MR MR

n z
 =

−

=
−


                  (10) 

( )
2

exp, ,R i pre iM MR
RMSE

n

−
=                   (11) 

where MRexp,i is the ith experimentally observed 

moisture ratio, MRpre,i is the ith predicted moisture ratio, 

MR′pre,i is the mean average of predicted moisture ratio 

n is the number of observations, and z, the number of 

constants in models. 

ANN modeling 

ANNs have shown the upper hand in serving 

nonlinear programming over predictable modeling 

methods due to their rapid learning ability and suitability 

to nonlinear processes. An input layer, one or more 

hidden layer(s), and an output layer make up the ANN 

infrastructure. Each layer is made up of a collection of 

neurons or nodes. The internal connections between 

these nodes are known as weights, and they determine 

which nodes should be triggered based on the relative 

relevance of each signal. A mathematical activation 

function is used to process data in the nodes (e.g., 

TANSIGMOID, LOGSIGMOID, PURELIN, etc.) [19]. 

ANN learns from examples through iterations (epochs) 

without prior knowledge of the relationship between the 

variables being considered. ANN corrects the network 

by altering the internal connections based on the 

discrepancy between experimental and predicted 

results. This iterative process continues until the 

network predictions are reasonably accurate and 

consistent with the target data. Model simulations are 

used to obtain anticipated data once the training model 

has been tested and validated. 

The data were modeled using a multiple-layer 

Feed-forward backpropagation algorithm network. One 

of the supervised learning techniques is the 

backpropagation algorithm (BP). The BP algorithm 

updates the weights by going ahead and backward until 

the output vector, and the predicted vector is as close 

as possible. Nonlinear mapping is a strong suit of the 

BP method. The primary benefit of adopting BP is that 

it can learn and adapt independently. Input data such 

as drying temperature, air velocity, and drying time 

make up the input layer. The output data, such as 

moisture ratio and drying rate, are stored in the output 

layer. 75% of the input data was utilized for training the 

network, with the remaining 25% being used to test the 

network. The Levenberg-Marquardt (LM) learning 

method was used to train ANN, a well-known efficient 

algorithm [19]. The adaptive learning algorithm was 

LEARNGDM (gradient descent with momentum weight 

and bias  learning  function). This ANN  simulation  was  
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done in MATLAB version.2021 with the ANN toolbox 

(command: NN tool). The number of neurons in the 

input hidden layer was varied to test various topologies. 

In addition, various permutations of activation functions 

in the hidden layers were employed. Standard 

statistical measures, including coefficient of 

determination (R2), root mean square error (RMSE), 

and mean absolute error (MAE), were used to assess 

the predictability of the ANN model. 

( )

( )

2

,exp ,mod
2 1

2

,exp ,mod

1

1

'

n

i i
i
n

i i
i

y y

R

y y

=

=

−

= −

−





                  (12) 

( )
2

,exp ,modi iMR MR
RMSE

n

−
=                   (13) 

( ),exp ,mod

1

1 n

i i
i

MAE y y
n =

= −                   (14) 

where n is the number of observations, yi,exp is 

experimental data, yi,mod is predicted data and y‘i,mod is 

mean average of predicted data. 

 
RESULTS AND DISCUSSION 

 
Equilibrium moisture content - Relative humidity (EMC-
RH) 

The EMC and RH for the paddy were analysed. 

From the results, it was found that EMC decreases with 

temperature and increases with RH, as shown in 

Table 2. By fitting the data to Eq. (3). coefficients of the 

Henderson equation β and α were evaluated.                     

β = 0.3461 and α = 2.164 [20]. The equilibrium moisture 

content at any other relative humidity and temperature 

can be easily measured by fitting the data to 

Henderson's equation (Eq. 3). 

Table 2. EMC-RH data. 

Relative 

humidity, % 

Temperature, °C 

28 40 50 60 70 

EMC 

33 7.92 7.51 7.40 7.30 7.20 

52 9.94 9.90 9.98 9.96 9.53 

64 11.56 11.54 11.42 11.26 11.10 

75 13.14 13.10 13.05 12.90 12.79 

84 16.13 15.18 14.96 14.75 14.55 

Effect of drying temperature and air velocity 

The moisture content was found to reduce with 

rising drying time. Moisture content was determined at 

various temperatures where the equilibrium was 

reached faster while increasing the temperature. 

However, removing the bound moisture at low 

temperatures requires extended time. In the case of 

higher temperatures (60 and 70) °C, the time taken to 

reach the equilibrium was less due to the higher 

diffusivity of moisture from the paddy to the surrounding 

air [21], the relative humidity of the drying air at a higher 

temperature was less compared to that at a lower 

temperature. Due to this reason, there was a higher 

rate of moisture diffusion as the temperature increased. 

Furthermore, it could be noted that the temperature 

affected the drying rate, and the total drying method 

was found to occur only in the falling rate period, as 

shown in Fig. 2. [22]. It specified that the method 

explaining the dehydration behavior of the paddy in a 

tray dryer was diffusion-governed [23]. 

Modeling of drying process by various mathematical 
models 

The moisture ratio estimated from the 

experimental drying data at various temperatures and 

velocities was matched to twelve thin-layer models. 

The statistical parameters obtained from the regression 

analysis of these models are listed in Table 3. The R2, 

RMSE and χ2 values for the models varied between 

0.899 to 0.999, 0.053 to 0.947, and 0.0001 to 0.0223, 

respectively. Hence, the model with the highest R2 and 

the lowest χ2 and RMSE was considered the best fit 

[24—27]. The Midilli model, in particular, was shown to 

be adequate in representing the tray drying behavior of 

paddy. The moisture ratio was calculated by 

considering the equilibrium moisture content, which is 

evaluated using Eq. (9). Fig. 3 was drawn between 

observed data and data predicted by the Midilli model 

at different temperatures and velocities [28]. Midilli 

model describes sufficiently well the drying 

characteristics of paddy at a given set of conditions 

[29,30]. 

Moisture ratio processing by ANN predictive modeling 

Several topologies were tested by varying the 

number of processing elements (neurons) in the input 

hidden layer. The number of neurons in the hidden 

input layer varied to find the optimum number of 

processing elements. Several combinations of 

activation functions in the input hidden layer and output 

hidden layer were also employed. The number of 

processing elements and iterations (epoch) were 

recorded for each topology. Standard statistical 

parameters, like RMSE, MAE, and R2 were employed 

to verify the accuracy of the prediction and validate the 

predictability of the ANN model [31]. After using various 

ANN topologies to the testing data, it was found that the 

network with TANSIGMOID – TANSIGMOID activation 

function combinations and five neurons in the input 

hidden layer gave the best result with maximum values 

of R2, RMSE, and MAE of 0.9976, 0.0360, and 0.0034 

were  in  accordance  with  the  range  reported  in  the  
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Figure 2. Rate of drying curves of paddy at different temperature 

and air velocity of (a) 1 m/s (b) 1.5 m/s (c) 2 m/s. 

literature R2 ranged from 0.981 to 0.999, RMSE ranged 

from 0.0333 to 0.1475 and MAE ranged from 0.05318 

to 0.0088 [19,32]. 

Compared to other combinations, most training, 

validation, and testing data points for TANSIGMOID-

TANSIGMOID activation function combinations and 

five neurons in the input hidden layer were closer to the 

equity line, indicating better fitness between experimental 

 
Figure 3. Experimental MR vs predicted MR by the Midilli model: 

(a) 1 m/s (b) 1.5 m/s (c) 2 m/s. 

and ANN outputs shown in Fig.4. It was also noticed 

that TANSIGMOID - PURELIN activation function 

combinations, seven neurons in the input hidden layer 

showed the minimum deviation, and nine neurons in the 

input hidden layer with TANSIGMOID - LOGSIGMOID  
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Table 3. Results of statistical parameters estimated by regression analysis for paddy. 

Model, MR = 

S
ta

ti
s
ti
c
a

l 

p
a

ra
m

e
te

rs
 Air velocity, m/s 

1 1.5 2 

Temperature °C 

40 50 60 70 40 50 60 70 40 50 60 70 

Page 

( )exp nkt−   

R2 0.998 0.997 0.995 0.992 0.999 0.996 0.993 0.981 0.997 0.995 0.982 0.987 

RMSE 0.845 0.573 0.513 0.457 0.834 0.596 0.499 0.571 0.840 0.578 0.612 0.636 

χ2 0.0002 0.0005 0.0010 0.0019 0.0001 0.0007 0.0016 0.0046 0.00049 0.0011 0.0044 0.0033 

Weibull distribution 

( )exp na b kt −  −
 

  

R2 0.991 0.994 0.998 0.996 0.992 0.997 0.992 0.992 0.991 0.998 0.993 0.993 

RMSE 0.726 0.438 0.326 0.266 0.683 0.418 0.321 0.268 0.637 0.418 0.316 0.202 

χ2 0.019 0.003 0.004 0.0001 0.0017 0.006 0.0012 0.0014 0.0018 0.0002 0.0001 0.0015 

Henderson and Pabis 

( )expa kt −   

R2 0.899 0.958 0.981 0.994 0.911 0.966 0.992 0.987 0.923 0.984 0.984 0.981 

RMSE 0.947 0.754 0.545 0.449 0.752 0.702 0.484 0.566 0.570 0.586 0.595 0.626 

χ2 0.0258 0.0101 0.0044 0.0013 0.0219 0.0078 0.0017 0.0030 0.0183 0.0034 0.0036 0.0047 

Two term 

( ) ( )0 1exp expa k t b k t − +  −  

R2 0.964 0.952 0.976 0.992 0.911 0.966 0.987 0.983 0.923 0.984 0.978 0.969 

RMSE 0.946 0.812 0.629 0.292 0.828 0.772 0.359 0.374 0.653 0.741 0.429 0.455 

χ2 0.0216 0.017 0.0064 0.0017 0.0202 0.0076 0.0028 0.0039 0.0182 0.0042 0.0051 0.0073 

Wang and Singh 

21 at bt+ +   

R2 0.984 0.991 0.996 0.997 0.989 0.995 0.997 0.994 0.995 0.997 0.993 0.993 

RMSE 0.732 0.442 0.332 0.318 0.624 0.397 0.363 0.401 0.567 0.437 0.458 0.302 

χ2 0.0042 0.0021 0.0009 0.0005 0.0026 0.0010 0.0006 0.0014 0.0011 0.0006 0.0014 0.0017 

Modified Page 

( )exp nkt −
 

 

R2 0.998 0.997 0.995 0.992 0.999 0.996 0.993 0.981 0.997 0.995 0.982 0.987 

RMSE 0.845 0.573 0.513 0.457 0.834 0.596 0.499 0.571 0.840 0.578 0.612 0.636 

χ2 0.0002 0.0005 0.0010 0.0019 0.0001 0.0007 0.0016 0.0046 0.0004 0.0011 0.0044 0.0033 

Verma 

( ) ( ) ( )exp 1 expa kt a kt− + − −   

R2 0.913 0.958 0.979 0.991 0.926 0.969 0.988 0.983 0.940 0.982 0.979 0.978 

RMSE 0.696 0.917 0.626 0.457 0.714 0.817 0.511 0.573 0.828 0.649 0.614 0.650 

χ2 0.0274 0.0119 0.0055 0.0020 0.0223 0.0085 0.0027 0.0041 0.0171 0.0044 0.0053 0.0059 

Lewis 

( )exp kt−   

R2 0.926 0.948 0.972 0.986 0.913 0.944 0.981 0.972 0.934 0.962 0.981 0.983 

RMSE 0.759 0.958 0.791 0.676 0.657 0.904 0.715 0.757 0.546 0.806 0.784 0.806 

χ2 0.0274 0.0119 0.0055 0.0020  0.022 0.0085 0.0027 0.0041 0.0171 0.0044 0.0053 0.0059 

Simplifed Fick's diffusion 

( )( )2exp /a c t L−   

R2 0.899 0.95 0.981 0.994 0.912 0.966 0.992 0.987 0.923 0.984 0.984 0.981 

RMSE 0.947 0.754 0.545 0.449 0.752 0.702 0.484 0.566 0.570 0.586 0.595 0.626 

χ2 0.0258 0.0101 0.0044 0.0013 0.0219 0.0078 0.0017 0.0030 0.0183 0.0034 0.0036 0.0047 

Logarithmic 

( )expa kt c− +   

R2 0.944 0.974 0.981 0.989 0.946 0.974 0.986 0.977 0.947 0.981 0.973 0.967 

RMSE 0.686 0.708 0.545 0.379 0.562 0.690 0.451 0.460 0.454 0.582 0.523 0.582 

χ2 0.0139 0.0063 0.0043 0.0025 0.0131 0.0060 0.0030 0.0054 0.0125 0.0042 0.0063 0.0081 

Midilli 

( )exp na kt bt− +   

R2 0.991 0.998 0.998 0.999 0.992 0.997 0.999 0.998 0.992 0.998 0.999 0.994 

RMSE 0.713 0.427 0.316 0.259 0.668 0.406 0.311 0.270 0.620 0.405 0.313 0.167 

χ2 0.0020 0.0003 0.0004 0.0001 0.0017 0.0006 0.0001 0.0002 0.0018 0.0002 0.0002 0.0012 

Two Term Exponential 

( ) ( ) ( )exp 1 expa kt a kat− + − −   

R2 0.913 0.958 0.979 0.991 0.926 0.969 0.988 0.983 0.997 0.995 0.982 0.987 

RMSE 0.696 0.917 0.626 0.457 0.714 0.817 0.511 0.573 0.840 0.578 0.612 0.636 

χ2 0.0274 0.0119 0.0055 0.0020 0.0223 0.0085 0.0027 0.0041 0.0004 0.0011 0.0044 0.0033 

 

activation function combinations showed the least fit.  

Using regression analysis and the Minitab 

version, a correlation was created between moisture 

ratio, drying time, drying temperature, and air velocity 

[33,34]. Fig.5 shows the schematic representation of 

ANN model topology. 

2 2 20.000349 0.000005 0.0131 0.000058

0.000286 0.000083 0.04195 0.00531

0.081 1.523

MR t T Tt

t T t T



 



= − − + +

+ − −

− +

(15) 

Drying rate processing by ANN predictive modeling 

The number of neurons in the input hidden layer 

was changed to determine the optimal number of 

processing elements. Several activation functions were 

used in the input hidden layer and output hidden layer. 

The number of processing elements and iterations 

(epoch) for each topology was recorded. After applying 

different ANN topologies to the testing data, it was 

found that the network with TANSIGMOID-

TANSIGMOID   activation   function   combinations   and  
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Figure 4. Comparison of experimental MR and predicted MR of 

ANN modeling using TANSIGMOID –TANSIGMOID activation 

function: (a) 1 m/s (b) 1.5 m/s (c) 2 m/s. 

nine neurons in the input hidden layer produced the 

best results, with R2, RMSE, and MAE values of 0.9696, 

0.0916, and 0.0028 were in accordance with the range 

reported in the literature, R2 ranged from 0.981 to 

0.999, RMSE ranged from 0.0333 to 0.1475, and MAE 

ranged from 0.05318 to 0.0088 [19,32]. 

Figure 5. Comparison of experimental DR and predicted DR of 

ANN modeling using TANSIGMOID – TANSIGMOID activation 

function: (a) 1 m/s (b) 1.5 m/s (c) 2 m/s. 

Similarly, the drying rate data predicted by the 

other models, most of the training, validation, and 

testing data points for TANSIGMOID-TANSIGMOID 

activation  function  combinations  and  nine neurons in 
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the input hidden layer were closer to the diagonal than 

for other combinations, indicating that the experimental 

and ANN outputs shown in Fig. 6 are the best fit. Eight 

neurons in the input hidden layer with TANSIGMOID - 

LOGSIGMOID activation function combinations have 

the least fit, whereas six neurons in the input hidden 

layer with TANSIGMOID - PURELIN activation function 

combinations have the reasonable fit. Using regression 

analysis, Minitab version.17 was used to build a 

correlation between drying rate, drying time, drying 

temperature, and air velocity. 

2 20.000001 0.000057 0.000002

0.000041 0.000006 0.000126 0.000115

0.00214 0.00226

DR t tT

t T t T



 



= − − −

− − + +

+ −

           (16) 

Figure 6. Schematic representation of ANN model. 

ANN versus mathematical models 

The twelve mathematical drying models had lower 

R2 and higher MSE than the ANN (Table 4). The plot of 

experimental vs. predicted data (Fig. 4) and (Fig. 6) 

reveals that ANN accurately predicted the moisture 

ratio and drying rate for tray-dried paddy. Similarly, the 

independent of parameters used, the prediction 

capability of trained ANN was better than that of the 

investigated mathematical models, was reported by 

[35—38]. It is worth noting that the Midilli model was able 

to compete spiritedly with ANN's unique predictive 

capabilities, which were made possible by the lesser 

complexity of drying data. Fig. 7 shows a comparative 

analysis between different combinations of activation 

functions. 

Determination of effective diffusivity 

During the falling rate period, diffusion-controlled 

drying was investigated. It can be described by using 

Fick's diffusion equation [39,40]. Effective diffusivities 

of paddy for given temperatures and velocities were 

evaluated by Eq.(5). The effective diffusivity varied from 

15.05 10-9 m2/s to 28.5 10-9 m2/s for paddy presented in 

Table 5. It was observed that the effective diffusivity 

was increased with the increased drying temperatures 

[41]. 

Figure 7. Comparative analysis between different combinations 

of activation functions: (a) R2, (b) RMSE, (c) MAE. 
 

Table 4. Comparative evaluation of ANN and selected semi-

empirical model for a temperature range of (40—70) °C and air 

velocity range of (1—2) m/s. 

Model  R2 MSE 

Midilli 0.991—0.999 0.028—0.508 

ANN 0.9976 0.0013 
 

However, no significant increment was observed due 

to increasing air velocities. Water evaporation occurred 

at the seed's surface, which was more immediately 

affected by temperature and velocity. Even with 

accelerated velocity and increasing temperature, the air 

had inadequate energy to release water molecules 

from the seed surface [42]. 

Effect of temperature on diffusivity 

The activation energy was calculated from the 

slope of the Arrhenius plot, ln(D) versus 1/T. The 

activation energy was evaluated to be 6.8 to 7.3 kJ/mol. 

 

 

 

(a) 

 

(b) 

 

(c) 
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The majority of the water in paddy (like in other 

agricultural products) is bounded water. As a result, the 

drying process occurred at a falling rate. The drying and 

energy consumption rate increases with temperature 

and air velocity. If temperature increases, the water 

molecules gain more kinetic energy, leading to faster 

diffusion. The effect of temperature and air velocity on 

moisture diffusivity and activation energy in drying are 

shown in Table 6 [43]. 

 

Table 5. Effective diffusivity (m2/s) at different temperatures and velocities. 

Values 

Air velocity, m/s 

1 1.5 2 

Temperature, °C 

40 50 60 70 40 50 60 70 40 50 60 70 

Slope 0.0524 0.0559 0.0614 0.0654 0.0711 0.0751 0.0795 0.0820 0.0782 0.0826 0.0868 0.0992 

Deff 10-9 15.05 16.06 17.62 18.81 20.43 21.58 22.86 23.56 22.47 23.72 24.93 28.50 

 

Table 6. Data for diffusivity vs temperature. 

 Air velocity, m/s 

 1 1.5 2 

1/T, 1/K 0.00319 0.00309 0.00300 0.00291 0.00319 0.00309 0.00300 0.00291 0.00319 0.00309 0.00300 0.00291 

ln D -18.01 -17.94 -17.85 -17.78 -17.70 -17.65 -17.59 -17.56 -17.61 -17.55 -17.50 -17.37 

Ea, kJ 6.8 6.9 7.3 

 

CONCLUSION 

 

Prediction of the drying kinetics of paddy was 

carried out using mathematical and ANN modeling. 

Specifically, twelve mathematical drying models and 

ANNs with different activation functions, such as 

TANSIGMOID, LOGSIGMOID, and PURELIN were 

evaluated. ANN models result in better prediction of 

drying kinetics. The accuracy level of the various 

activation functions was evaluated using model 

performance metrics. The following conclusions are 

made with the observed outcomes: ANN modeling 

attained exceptionally greater prediction accuracy than 

mathematical modeling based on the results of 

evaluation metrics. Among the three activation function, 

such as TANSIGMOID, LOGSIGMOID, and PURELIN, 

TANSIGMOID predicted the drying kinetics of paddy 

more precisely. R2, RMSE, and MAE, performance 

metrics of ANN, showed a better scale of 0.9976, 

0.0360, and 0.0034, respectively. Investigation of 

equilibrium moisture content revealed a direct 

relationship between relative humidity and drying 

temperature. It was observed that EMC and relative 

humidity increased as the temperature decreased. 
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NAUČNI RAD 

MODELOVANJE KINETIKE SUŠENJE PIRINČA 
U SUŠARI SA TAVAMA VEŠTAČKOM 
NEURONSKOM MREŽOM 

 
Proučavanje kinetike sušenja i karakteristika poljoprivrednih proizvoda je od suštinskog 

značaja za procenu vremena sušenja, projektovanje sušara i optimizaciju procesa 

sušenja. Difuzivnost vlage u različitim uslovima sušenja je ključna za projektovanje 

procesa i opreme. Kinetika sušenja pirinča u sušari sa tavama je modelovana 

korišćenjem veštačke neuronske mreže (ANN). Levenberg-Markuardt (LM) algoritam za 

obuku sa funkcijama aktivacije skrivenog sloja TANSIGMOID i TANSIGMOID dao je 

superiorne rezultate u predviđanju odnosa vlage i brzine sušenja. Takođe, izvršena je 

komparativna procena prediktivnih sposobnosti ANN i 12 različitih matematičkih modela 

sušenja. Midilijev (Midillijev) model adekvatno opisuje eksperimentalne podatke sa 

vrednošću koeficijenta determinacije R2 koja uporediva sa vrednošću za ANN. Međutim, 

RMSE za ANN (0,0360) je značajno niži od onog kod Midilijevog modela (0,167 do 

0,712). Efektivna difuzivnost vlage se povećava sa porastom temperature sa                

15,05 x 10-9 m2/s na 28,5 x 10-9 m2/s. Energija aktivacije za sušenje zrna pirinča varirala 

je između 6,8 kJ/mol i 7,3 kJ/mol, što je pokazalo umerenu potrebu za energijom za 

difuziju vlage. 

Ključne reči: sušara sa tavama, ravnotežni sadržaj vlage, matematičko 
modelovanje, ANN modelovanje, efektivna difuzivnost, energija aktivacije. 


