Uticaj strukturno-teksturnih karakteristika sulfidnih minerala na njihovo luženje iz polimetaličnog koncentrata rastvorom natrijum-nitrata i sumporne kiseline

Miroslav D. Sokić, Jovica N. Stojanović, Branislav R. Marković, Mladen Bugarčić, Nada D. Štrbac, Željko J. Kamberović, Vaso D. Manojlović

Abstract


U radu su prikazani rezultati ispitivanja uticaja strukturno-teksturnih karakteristika sulfid­nih minerala na njihovo luženje iz polimetaličnog koncentrata rastvorom sumporne kise­line i natrijum-nitrata. Za određivanja karakteristika sulfidnih minerala u polaznom koncen­tratu i čvrstom ostatku luženja korišćena je hemijska, rendgenska difrakciona analiza na polikristalnom uzorku (XRD), kvalitativna i kvantitativna mikroskopska i SEM/EDX analiza. U polimetaličnom koncentratu je utvrđeno prisustvo halkopirita, sfalerita, galenita, pirotina i minerala jalovine. Tokom luženja Pb–Zn–Cu sulfidnog koncentrata rastvorom natrijum-nitrata i sumporne kiseline, deo sulfidnih minerala ostaje neizlužen i zaostaje u čvrstim ostacima luženja. Olovo, u obliku slaborastvornog olovo-sulfata (anglezita), ostaje u neizlu­ženom ostatku. Sadržaj sulfidnih minerala u neizluženom ostatku iznosi 35%, u kojem se 54,7% halkopirita, 31,9% sfalerita, 8,2% galenita i 37,6% pirotina javlja u vidu slobodnih mineralnih zrna sa intenzivnom korozijom njihovih ivica i pojavom elementarnog sumpora duž njihovih oboda. Strukturni sklop sulfidnih mineralnih zrna u polimetaličnom koncen­tratu je povolјan i nije razlog prisustva neizluženih sulfidnih minerala u čvrstim ostacima luženja. Razlog za to je elementarni sumpor koji nastaje u procesu luženja, taloži se na površini sulfidnih mineralnih zrna i otežava kontakt sulfidnih minerala i sredstva za luženje


Keywords


polimetalični koncentrat; strukturne karakteristike sulfidnih minerala; luženje

References


Antonijević M, Janković Z, Dimitrijević M. Kinetics of chalcopyrite dissolution by hydrogen peroxide in sulphuric acid. Hydrometallurgy. 2004; 73: 329–334.

Aydogan S, Ucar G, Canbazoglu M. Dissolution kinetics of chalcopyrite in acidic potassium dichromate solution. Hydrometallurgy. 2006; 81: 45–51.

Prasad S, Pandey BD. Alternative processes for treatment of chalcopyrite —A review. Miner Eng. 1998; 11: 763–781.

Watling HR. Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options. Hydro-metallurgy. 2013; 140: 163–180.

Li Y, Kawashima N, Li J, Chandra AP, Gerson AR. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Adv Colloid Interface Sci. 2013; 197–198: 1–32.

Dreisinger D. Copper leaching from primary sulfides: Options for biological and chemical extraction of copper. Hydrometallurgy. 2006; 83: 10–20.

Ćirković M, Kamberović Ž, Bugarin M. Laboratory testing results of kinetics and processing technology of the polymetallic sulphide concentrate Blagojev Kamen – Serbia. Metall Mater Eng. 2016; 22: 117–127.

Hackl RP, Dreisinger DB, Peters E, King JA. Passivation of chalcopyrite during oxidative leaching in sulfate media. Hydrometallurgy. 1995; 39: 25–48.

McDonald RG, Muir DM. Pressure oxidation leaching of chalcopyrite. Part I. Comparison of high and low temperature reaction kinetics and products. Hydrometallurgy. 2007; 86: 191–205.

Córdoba EM, Muñoz JA, Blázquez ML, González F, Bal-lester A. Passivation of chalcopyrite during its chemical leaching with ferric ion at 68 °C. Miner Eng. 2009; 22: 229–235.

Sokić M, Matković V, Marković B, Manojlović V, Štrbac N, Živković D, Kamberović Ž. Complex sulphide–barite ore leaching in ferric chloride solution. Metall Mater Eng. 2016; 22: 81–89.

Agacayak T, Aras A, Aydogan S, Erdemoglu M. Leaching of chalcopyrite concentrate in hydrogen peroxide solution. Physicochem Probl Miner Process. 2014; 50: 657–666.

Sokić M, Milošević V, Stanković V, Matković V, Marković B. Acid leaching of oxide–sulfide copper ore prior the flotation – A way for an increased metal recovery. Hem Ind. 2015; 69: 453–458.

Dixon DG, Mayne DD, Baxter KG. Galvanox™ — a novel galvanically–assisted atmospheric leaching technology for copper concentrates. Can Metall Q. 2008; 47: 327–336.

Aydogan S, Aras A, Canbazoglu M. Dissolution kinetics of sphalerite in acidic ferric chloride leaching. Chem Eng J. 2005; 114: 67–72.

Hiroyoshi N, Kitagawa H, Tsunekawa M. Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solutions. Hydro-metallurgy. 2008; 91: 144–149.

Li Y, Wei Z, Qian G, Li J, Gerson AR. Kinetics and Mechanisms of Chalcopyrite Dissolution at Controlled Redox Potential of 750 mV in Sulfuric Acid Solution. Minerals. 2016; 6: Article number 83.

Shiers DW, Collinson DM, Kelly NJ, Watling HR. Copper extraction from chalcopyrite: Comparison of three non–sulfate oxidants, hypochlorous acid, sodium chlorate and potassium nitrate, with ferric sulfate. Miner Eng. 2016; 85: 55–65.

Habashi F. Nitric Acid in the Hydrometallurgy of Sulfides. In: Proceedings of the EPD Congress 1999, TMS–AIME. Warrendale, Pennsylvania, 1999, pp. 357–364.

Bredenhann R, Van Vuuren CPJ. The leaching behaviour of a nickel concentrate in an oxidative sulphuric acid solution. Miner Eng. 1999; 12: 687–692.

Sokić M, Marković B, Živković D. Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid. Hydro-metallurgy. 2009; 95: 273–279.

Sokić M, Marković B, Matković V, Živković D, Štrbac N, Stojanović J. Kinetics and mechanism of sphalerite leaching by sodium nitrate in sulphuric acid solution. J Min Metall, Sect B. 2012; 48B: 185–195.

Peng P, Xie H, Lu L. Leaching of a sphalerite concentrate with H2SO4–HNO3 solutions in the presence of C2Cl4. Hydrometallurgy. 2005; 80: 265–271.

Droppert D, Shang Y. The leaching behaviour of nickeliferous pyrrhotite concentrate in hot nitric acid. Hydro-metallurgy. 1995; 39: 169–182.

Gok O, Anderson CG. Dissolution of low-grade chalcopyrite concentrate in acidified nitrite electrolyte. Hydrometallurgy. 2013; 134–135: 40–46.

Anderson CG. Treatment of copper ores and concentrates with industrial nitrogen species catalyzed pres-sure leaching and non–cyanide precious metals recovery. J Met. 2003; 55: 32–36.

Baldwin SA, Weert GV. On the catalysis of ferrous sulphate oxidation in autoclaves by nitrates and nitrites. Hydrometallurgy. 1996; 42: 209–219.

Sokić M, Marković B, Matković V, Štrbac N, Živković D. Investigation of leaching of polymetallic Pb–Zn–Cu sulphide concentrate with sulphuric acid and sodium nitrate solution. In: Proceedings of the I International Congress: “Engineering, Materials and Management in the Processing Industry”. Jahorina, Republic of Srpska, 2009, pp. 132–136.

Radosavljević-Mihajlović AS, Stojanović JN, Radosav-ljević SA, Pačevski AM, Vuković NS, Tošović RD. Mineralogy and genetic features of the Cu–As–Ni–Sb–Pb mineralization from the Mlakva polymetallic deposit (Serbia) — New occurrence of (Ni–Sb)–bearing Cu–arsenides. Ore Geol Rev. 2017; 80: 1245–1258.

Stojanović JN, Radosavljević-Mihajlović AS, Radosavljević SA, Vuković NS, Pačevski AM. Mineralogy and genetic characteristics of the Rudnik Pb–Zn/Cu,Ag,Bi,W polymetallic deposit (Central Serbia) – New occurrence of Pb(Ag)Bi sulfosalts. Period Mineral. 2016; 85: 121–135.

Sokić M, Radosavljević S, Marković B, Matković V, Štrbac N, Kamberović Ž, Živković D. Influence of chalcopyrite structure on their leaching by sodium nitrate in sulphuric acid. Metall Mater Eng. 2014; 20: 53–60.




DOI: http://dx.doi.org/10.2298/HEMIND161130006S

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 HEMIJSKA INDUSTRIJA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.