Primena veštačkih neuronskih mreža za matematičko modelovanje uticaja sastava i uslova proizvodnje na svojstva PVC podnih obloga

Rajko M. Radovanović, Mirjana C. Jovičić, Oskar J. Bera, Jelena M. Pavličević, Branka M. Pilić, Radmila Ž. Radičević

Abstract


Mogućnost primene polivinilhloridnih (PVC) podnih obloga je određena krajnjim svojstvima koja zavise od sastava obloge i načina proizvodnje. Zbog složenog sastava i različitih načina pripreme PVC podnih obloga, veoma je teško tačno proceniti uticaj pojedinačnog proces­nog parametara na svojstva dobijenog proizvoda. U ovom radu, proučavan je efekat razli­čitih procesnih parametara (sastav PVC smeše, temperature i vremena ekspanzije), na mehanička svojstva PVC podnih obloga. Uticaj različitih ulaznih promenljivih na mehanička svojstva je uspešno određen primenom veštačkih neuronskih mreža sa optimizovanim bro­jem skrivenih neurona. Garson i Yoon modeli su primenjeni za izračunavanje i opisivanje doprinosa procesnih parametara u veštačkoj neuronskoj mreži.


Keywords


PVC podne obloge, mehanička svojstva, veštačke neuronske mreže

References


H. Demir, M. Sipahioğlu, D. Balköse, S. Ülkü, Effect of additives on flexible PVC foam formation, J. Mater. Process. Tech. 195 (2008) 144–153.

S.T. Lee, C.B. Park, N.S. Ramesh, Polymeric Foams: Science and Technology, CRC Press Taylor & Francis Group, Boca Raton, FL, 2007.

M.A. Rodríguez-Pérez, Crosslinked polyolefin foams: production, structure, properties, and applications, in Crosslinking in Materials Science, Vol. 184, Springer Berlin, 2005, pp. 97–126.

G. Holden, H.R. Kricheldorf, R.P. Quirk, Thermoplastic Elastomers, Cincinnati: Hanser, 2004.32/, in Handbook of Polymer Foams, D. Eaves, Ed., Rapra Technology Limited, Crewe, 2004.

Handbook of Polymer Foams, D. Eaves, Ed., Rapra Technology Limited, Crewe, 2004.

Handbook of Polymeric Foams and Foam Technology, D. Klempner, K.C. Frisch, Eds., Oxford University Press, New York, 1991.

J.L. Throne, Thermoplastic Foams, Sherwood Publishers, Hinckley, OH, 1996.

A.H. Landrock, Handbook of Plastic Foams: Types, Pro-perties, Manufacture and Applications, William Andrew, NJ, 1996.

P.W Jones, C.M Lavender, Expanded vinyl flooring: a study of variables of foam formulations, Fisons Indus-trial Chemicals, March (ref. G/B/2), 1969.

V. Kumar, J.E. Weller, A Process to Produce Microcel-lular PVC, Int. Polym. Proc. 7 (1993) 73–80.

V. Kumar, J.E. Weller, R. Montecillo, Microcellular PVC, J. Vinyl. Technol. 14 (1992) 191–197.

Lj. Čvorkov, I. Popović, S. Veličković, K. Brankov, V. Vukovljak, The Dependence of Plastisol Quality on the Type of Poly(Vinyl Chloride) and Viscosity Regulator, Acta Period. Technol. 29–30 (1998) 97–104.

J. Patterson, Vinyl foam: Effect of density on physical properties, J. Vinyl Addit. Technol. 4 (1998) 26–29.

J.L. Pfenning, M. Ross, Plastics Compounding, in Pro-ceeedings of PVC '90, PRI Brighton, UK, 1990, pp. 88–89.

E.B. Rabinovitch, J.D. Isner, J.A. Sidor, D.J. Wiedel, Effect of extrusion conditions on rigid PVC foam, J. Vinyl Addit. Technol. 3 (1997) 210–215.

R. Radovanović, V. Jašo, B. Pilić, D. Stoiljković, Effect of PVC plastisol composition and processing conditions on foam expansion and tear strength, Hem. Ind. 68 (2014) 701–707.

L.G. Shaw, A.R. Diluciano, Effect of calcium carbonate and paraffin wax levels on the performance of PVC pipe, J. Vinyl. Addit. Technol. 5 (1983) 100–103.

K.K. Mathur, D.B. Vanderheiden, Precipitated Calcium Carbonates as Ultraviolet Stabilizers and Impact Modi-fiers in Poly(Vinyl Chloride) Siding and Profiles, Polym. Sci. Technol. Polym. Addit. 6 (1984) 371–389.

T.H. Ferrigno, E.J. Wickson, Handbook of PVC Formul-ating, John Wiley & Sons, Inc., New York, 1993.

B. Azimipour, F. Marchand, Effect of calcium carbonate particle size on PVC foam, J. Vinyl Addit. Technol. 12 (2006) 55–57.

J.C. Hoskins, D.M. Himmelblau, Artificial neural network models of knowledge representation in chemical eng-ineer¬ing, Comput. Chem. Eng. 12 (1988) 881–890.

S. C. Wang, Artificial Neural Network in Interdisciplinary Computing in Java Programming, The Springer Inter-national Series in Engineering and Computer Science Vol. 743, 2003, pp. 81–100.

E.S. Elmolla,M. Chaudhuri, The Use of Artificial Neural Network (ANN) for Modelling, Simulation and Prediction of Advanced Oxidation Process Performance in Recal¬citrant Wastewater Treatment, Artificial Neural Net¬works – Application, Dr. Chi Leung Patrick Hui, Ed., ISBN: 978–953–307–188–6, InTech, DOI: 10.5772/14920 (available from: http://www.inte¬chopen.com/books/ artificial–neural–networks–application/the–use–of–artificial–neural–network–ann–for–modelling–simulation–and–prediction–of–advanced–oxidati)

J. Moody, J. Utans, Architecture selection strategies for neural networks application to corporate bond rating, in: Neural Networks in the Capital Markets, A. Refenes (Ed.), Wiley, Chichester, 1995, pp. 277–300.

G.D. Garson, Interpreting neural network connection weights, Al. Expert 6 (1991) 47–51.

Y. Yoon, T. Guimaraes, G. Swales, Integrating artificial neural networks with rule–based expert systems, Decis. Support Syst. 11 (1994) 497– 507.

Z. Huang, H. Chena, C.J. Hsua, W.H. Chenb, S. Wu, Credit rating analysis with support vector machines and neural networks: a market comparative study, Decis. Support Syst. 37 (2004) 543– 558.




DOI: http://dx.doi.org/10.2298/HEMIND151015012R

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 HEMIJSKA INDUSTRIJA

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.